CSc 461/561 Multimedia Systems Audio representation

Jianping Pan Spring 2015

First things first

- Course website alive
 - H on http://connex.csc.uvic.ca
 - H see "CSC 461: 201501 A01" tab (or adjust prefs)
 - ^Ĥ if you are not officially "in the system" yet, please send me an email and I can add you in manually
 - $\acute{\mathsf{H}}$ course lectures embedded in connex *
 - also publicly available http://www.cs.uvic.ca/~pan/csc461
 - H chat room and web forums available too
 - discussion group: get help and help others

get your A0 to me by Friday---help me help yourself---project hints next week! * now https embedding should be working without any tweaks in your browser

Research opportunities

- Undergraduate Research Award (USRA)
 - UVic CSc awarded 6+ for May'15 to Apr'16
 - Testdrive research for a term before a few yearsDept deadline: March 6, 2015
- Grad research opportunities
 - UVic CSc: theory, systems/networking, apps
 - UVic ECE: DSP, comm, power, materials, etc
 - UVic Fellowship deadline: January 15, 2015

^{1/9/15} CSc 461/561 some examples: http://www.cs.uvic.ca/~pan/usra

Sound is a wave

- How we hear
 - mouth / transmitter
 - air / cord
 - ear / receiver
- Continuous in both
 - time
 - amplitude
 - mechanic waves

Time

* human perception: 20 to 20KHz (17m to 17mm), about 330m/s in air

A wave of many waves

• Frequency Fundamental frequency - pitch $+0.5 \times$ • Amplitude $2 \times$ fundamental - loudness $+0.33 \times$ = $3 \times$ fundamental • Fourier Transform $+0.25 \times$ = $4 \times$ fundamental $+0.5 \times$ $5 \times$ fundamental CSc 461/561 1/9/15* any (periodic) waves: a sum of (co)sine waves of different frequencies

Not all waves are equal

1/9/15 CSc 461/561
* cannot hear or too loud so to hurt?

Sampling and quantization

1/9/15 CSc 461/561
 * in time and amplitude domains

7

Sampling rate

- If sampling_freq = true_freq
 in this example, a constant signal
- If sampling_freq = 1.5x true_freq
 an alias_freq of 0.5x true_freq

* how often to sample (is sufficient)?

Nyquist Theorem

- If a signal is bounded by frequency (f1,f2), then the sampling rate should be *at least* 2(f2-f1) to reconstruct the signal
- Human can hear 20Hz 20KHz
 - CD sampling rate: 44.1KHz
- Human voice 300Hz 4KHz

– telephone systems sampling rate: 8KHz

1/9/15 CSc 461/561
* too much or too less is suboptimal

Alias frequency

- If sampling_freq >= 2x true_freq
 true_freq is recovered
- If sampling_freq in [true_freq, 2x true_freq)
 alias_freq = sampling_freq true_freq
- If sampling_freq < true_freq
 true_freq' = true_freq mod sampling_freq
 - follow the first two approaches

Quantization depth

- How many bits per sample
 - In this example: 2 bits
 - telephone systems: 8 bits; CD: 16 bits

Quantization noise

- Quantization is lossy
- More bits, less information loss
- Signal-to-quantization-noise ratio
 - defined as a (log) ratio of signal/noise power
 - one more bit can add 6 db to SQNR

$$SQNR = 20 \log_{10} \frac{V_{signal}}{V_{quan_noise}} = 20 \log_{10} \frac{2^{N-1}}{\frac{1}{2}}$$

 $= 20 \times N \times \log 2 = 6.02 N (dB)$ (6.3)

* dB: decibel; 10 dB = 1 B; in honor of Alexander Graham Bell (phone) 12

Not all quantizer are linear

- Nonlinear/non-uniform quantization
 - humans are more sensitive to *small* changes from *small* values
- u-law or A-law (more bits for small values)

^{1/9/15} CSc 461/561
 * also known as bit (budget) allocation

Pulse Code Modulation (PCM)

- Band-limit filter → Filter A/D → 64kbps
 Quantizer
 - sample size: 8-bit (output) with u-law or A-law
- Data rate: 64Kbps (output)
- Reconstruction: low-pass filter
- ITU-T G.711

```
* recall dialup->56Kbps->DSL in CSc 461/561
in CSc 361?
```

Delta Modulation (DM)

- Prediction
 - If current > last, output 1 (to increase)
 - if current < last, output 0 (to decrease)</p>
- slope overload
 change too fast
- granular noise
 - change too slow

* recall TCP/IP header compression in CSc361?
CSc 461/561

Differential PCM (DPCM)

• Predictor

- Predict the current based on the history

• Quantizer

- quantize the difference

* essentially how to use fewer bits more efficiently

Adaptive DPCM (ADPCM)

• Adaptive quantizer

- adapt quantization step to the difference

• ITU-T G.723: 8KHz, 4-bit, 32Kbps

* half of G.711 (64Kbps)

CSc 461/561

This lecture

- Audio presentation
 - sampling rate, alias frequency
 - quantization depth, SQNR
 - PCM, DPCM, ADPCM
- Explore further
 - MIDI [Li&Drew 6.2]

Next lecture

- Multimedia representation
 - image [Ref: Li&Drew Chap 3-4]
 - bitmap vs vector
 - gray-scale vs color [3.1.1/2, 3.1.4-6]
 - picture resolution, pixel depth
 - color space (RGB, CMY, YUV) [4.2.1-3, 4.3.2]
 - gamma correction [4.1.6]