CSc 461/561 Multimedia Systems Lossless Compression

Jianping Pan Spring 2015

First things first

- A1 posted on connex
- due on Friday, Jan 23
- any questions?
- Project ideas?
- anything related to multimedia systems
- survey (and evaluate) it for 461 (561)
- group by 3 (or 2) or individual for 461 (561)
- email me by Monday, Jan 26
- [csc461] or [csc561] on subject line

CSc 461/561
2

Compression

- Why compression?
- there is (a lot of) redundancy!
- How to compress?
- remove data and information redundancy
- Lossless compression
- without information loss
- Lossy compression

Compressibility

- Compression ratio
$-\mathrm{B}_{0}$: \# of bits to represent before compression
$-B_{1}$: \# of bits to represent after compression
- compression ratio $=\mathrm{B}_{0} / \mathrm{B}_{1}$
- Entropy: a measure of uncertainty; min bits
- alphabet set $\left\{\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}\right\}$
- probability $\left\{\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}\right\}$
- entropy: - $\mathrm{p}_{1} \log _{2} \mathrm{p}_{1}-\mathrm{p}_{2} \log _{2} \mathrm{p}_{2}-\ldots-\mathrm{p}_{\mathrm{n}} \log _{2} \mathrm{p}_{\mathrm{n}}$

1/20/15
CSc 461/561
4

Entropy examples

- Alphabet set $\{0,1\}$
- Probability: \{p, 1-p\}
- Entropy: $\mathrm{H}=-\mathrm{p} \log _{2} \mathrm{p}-(1-\mathrm{p}) \log _{2}(1-\mathrm{p})$
- when $\mathrm{p}=0, \mathrm{H}=0$
- when $\mathrm{p}=1, \mathrm{H}=0$
- when $\mathrm{p}=1 / 2, \mathrm{H}_{\text {max }}=1$
- 1 bit is enough!

Shannon-Fano algorithm

- Fewer bits for symbols appear more often
- "divide-and-conquer"
- also known as "top-down" approach
- split alphabet set into subsets of (roughly) equal probabilities; do it recursively
- similar to building a binary tree

Symbol	H	E	L	O
Count	1	1	2	1

Frequency count of the symbols in "HELLO"

Shannon-Fano: examples

Shannon-Fano: results

- Prefix-free code
- no code is a prefix of other codes
- easy to decode

Symbol	Count	$\log _{2} \frac{1}{p_{i}}$	Code	\# of bits used
L	2	1.32	0	2
H	1	2.32	10	2
E	1	2.32	110	3
O	1	2.32	111	3
TOTAL number of bits:				10

1/20/15
CSc 461/561

* what if $\{0.4,0.3,0.2,0.1\}$

Shannon-Fano: more results

- Encoding is not unique
- roughly equal
(5)

Symbol	Count	$\log _{2} \frac{1}{p_{i}}$	Code	\# of bits used
L	2	1.32	00	4
H	1	2.32	01	2
E	1	2.32	10	2
O	1	2.32	11	2
TOTAL number of bits:				10

$1 / 20 / 15$
CSc 461/561

Huffman coding

- "Bottom-up" approach
- also build a binary tree
- and know alphabet probability!
- start with two symbols of the least probability
- $\mathrm{s}_{1}: \mathrm{p}_{1}$
- $\mathrm{s}_{2}: \mathrm{p}_{2}$
- s_{1} or $\mathrm{s}_{2}: \mathrm{p}_{1}+\mathrm{p}_{2}$
- do it recursively

Huffman coding: examples

- Encoding not unique; prefix-free code
- Optimality: $\mathrm{H}(\mathrm{S})<=\mathrm{L}<\mathrm{H}(\mathrm{S})+1$ Sort combine Sort combine Sort combine Sort combine

Run-length coding

- Run: a string of the same symbol
- Example
- input: AAABBCCCCCCCCCAA
- output: A3B2C9A2
- compression ratio $=16 / 8=2$
- Good for some inputs (with long runs)
- bad for others: ABCABC
- how about to treat ABC as an alphabet?

1/20/15
CSc 461/561
12

LZW compression

- Lempel-Ziv-Welch (LZ77, W84)
- Dictionary-based compression
- no a priori knowledge on alphabet probability
- build the dictionary on-the-fly
- used widely: e.g., Unix compress
- LZW coding
- if a word does not appear in the dictionary, add it
- refer to the dictionary when the word appears again

LZW examples

- Input
- ABABBABCABABBA

- Output
- 124523461

code	string

1	A
2	B
3	C

A	B	1	4	AB
B	A	2	5	BA
A	B			
AB	B	4	6	ABB
B	A			
BA	B	5	7	BAB
B	C	2	8	BC
C	A	3	9	CA
A	B			
AB	A	4	10	ABA
A	B			
AB	B			
ABB	A	6	11	ABBA
A	EOF	1		

$1 / 20 / 15$
CSc 461/561

This lecture

- Lossless compression
- entropy
- Shannon-Fano algorithm
- Huffman coding
- LZW compression
- Explore further
- decoding: Shannon-Fano, Huffman, LZW
- arithmetic coding [Ref: Li\&Drew 7.6]
$1 / 20 / 15$
CSc 461/561
15

Next lecture

- Multimedia manipulation
- lossy compression [Ref: Li\&Drew Chap 8]
- rate vs distortion [8.2-3]
- quantization: uniform vs non-uniform [8.4.1-2]
- discrete cosine transform [8.5.1]

