CSc 461/561 Multimedia Systems Lossy compression

Jianping Pan Spring 2015

Compression

- Why compression?
- there is (a lot of) redundancy!
- How to compress?
- remove data and information redundancy
- Lossless compression
- Lossy compression
- remove information redundancy adequately
- information loss, but higher compression ratio!
$1 / 21 / 15$
CSc 461/561
2

Lossy compression examples

- Why lossy compression is possible?
- some information is more important than others for human
- keep the important one

Compression Ratio: 7.7
1/21/15

Compression Ratio: 12.3
CSc 461/561

Original

Compression Ratio: 33.9
3

Tradeoff: rate vs distortion

- Rate
- \# of bits per source symbol
- Distortion
- one measure: mean square error (MSE)
-x : original value; y : reconstructed value
$-\mathrm{MSE}=\left[\left(\mathrm{x}_{1}-\mathrm{y}_{1}\right)^{2}+\left(\mathrm{x}_{2}-\mathrm{y}_{2}\right)^{2+}+\ldots+\left(\mathrm{x}_{\mathrm{N}}-\mathrm{y}_{\mathrm{N}}\right)^{2}\right] / \mathrm{N}$
- Rate vs distortion
- lower rate, higher distortion

1/21/15
CSc 461/561

Quantization

- Quantization (recall audio A/D)
- use a discrete value to represent a value range
- information loss!
- The smaller range, the less distortion
- granular distortion
- Quantization steps
- uniform: all ranges have the same size
- non-uniform: otherwise

CSc 461/561

Uniform quantization

- Quantization step: uniform
- Two constructions: midrise, midtread

Uniform Midrise Quantizer

Uniform Midtread Quantizer

Signal-to-quantization-noise ratio

- Quantization
-n bits; 2^{n} steps for $\left[-\mathrm{X}_{\text {max }}, \mathrm{X}_{\text {max }}\right]$
- step size: delta $=2 \mathrm{X}_{\text {max }} / 2^{\mathrm{n}}$
- granular distortion: $\quad \sigma^{2}{ }^{q}=\int_{-\Delta / 2}^{\Delta / 2}(x-0)^{2} \frac{1}{\Delta} d x=\frac{1}{12} \Delta^{2}$
- SQNR in dB
- $10 \log _{10}$ signal_energy / noise_energy $=10 \log _{10}\left[\left(2 \mathrm{X}_{\max }\right)^{2} / 12\right] /\left[\operatorname{delta}^{2} / 12\right]=20 \mathrm{n} \log _{10} 2$
- One more bit adds 6 dB to SQNR

Non-uniform quantization

- Recall u-law or A-law voice compander
- How to choose quantization steps?
$-\operatorname{Int}_{\mathrm{x}_{\mathrm{i}}}^{\mathrm{x}_{\mathrm{i}+1}} \mathrm{f}(\mathrm{x}) \mathrm{dx}=1 / 2^{\mathrm{n}}$

Non-uniform quantization: more

- How to represent a range?
$-\operatorname{Int}_{x_{i}}^{y_{i}} f(x) d x=1 / 2^{n+1}$
- when uniform: $y_{i}=\left(x_{i}+x_{i+1}\right) / 2$

Transformation

- Transformation
- represent information in anther space
- identify and remove (hard-to-remove) correlation, i.e., redundancy, in the original space
- information loss!
- e.g., time/space $=>$ frequency (FFT)
- Inverse transformation
- represent the info back in the original space

Discrete Cosine Transform

- Recall: a wave is of many waves
- "Any signal can be expressed as a sum of multiple signals that are sine or cosine waveforms at various amplitudes and frequencies."
- Cosine transform: using cosine waveforms
- DCT: integer indexes
- widely used in image compression (e.g., JPEG)

DCT: more

- 2-D DCT (8 x 8); $\mathrm{C}(\mathrm{x})=1 / \mathrm{sqrt}(2)$ when $\mathrm{x}=0$ $F(u, v)=\frac{1}{4} C(u) C(v)\left[\sum_{i=0}^{i} \sum_{j=0}^{i} f(i, j) \cos \frac{(2 i+1) u \pi}{16} \cos \frac{(2 j+1) \nu \pi}{16}\right]$
- Inverse 2-D DCT (IDCT); C(x)=1
$f(i, j)=\frac{1}{4} C(u) C(v)\left[\sum_{u=0}^{7} \sum_{v=0}^{7} F(u, v) \cos \frac{(2 i+1) u \pi}{16} \cos \frac{(2 j+1) v \pi}{16}\right]$
$1 / 21 / 15$
CSc 461/561
12

DCT: examples

Original values of an 8×8 block (in spatial domain)

Corresponding DCT coefficients (in frequency domain)

Lossy + lossless compression

- In a big picture...

$1 / 21 / 15$
CSc 461/561
14

This lecture

- Multimedia manipulation
- lossy compression
- rate vs distortion
- quantization: uniform vs non-uniform
- transformation: DCT
- Explore further
- wavelet-based coding [Ref: Li\&Drew 8.6.1]

Next lecture

- Multimedia manipulation
- audio compression [Ref: Li\&Drew Chap 13-14]
- quick review on PCM, DPCM and ADPCM
- examples: MPEG audio [14.1-2]

