CSc 461/561 Multimedia Systems Audio coding

> Jianping Pan Spring 2015

Audio is difficult to *compress*

high

bit-rate

low

- Lossless: without "information" loss
 - e.g., LPAC, FLAC, Monkey's Audio
 - MPEG-4 audio lossless coding (ALS): ~2 C/R
 - and many more (e.g., Apple Lossless ALAC)
- Lossy: with information loss
 - MPEG audio layer 3 (MP3): ~ 12 C/R
- Or other ways to represent audio

- music: MIDI; speech: synthesized voice (TTS) 1/27/15 CSc 461/561 * lossless after sampling and quantization

2

Lossless compression

- Why lossless compression?
 - to preserve audio quality (easy to decode too)
 - for further processing etc
 - "What is lost is not (fully) recoverable."
- Why plain entropy encoding fails for audio?
 - equally likely "letters"; too many "words"
 - very low compression ratio (C/R): ~1
 - e.g., winzip, gzip, etc directly on audio streams
- 1/27/15 CSc 461/561
 * lossless audio compression ratio: ~2

Lossless predictive coding

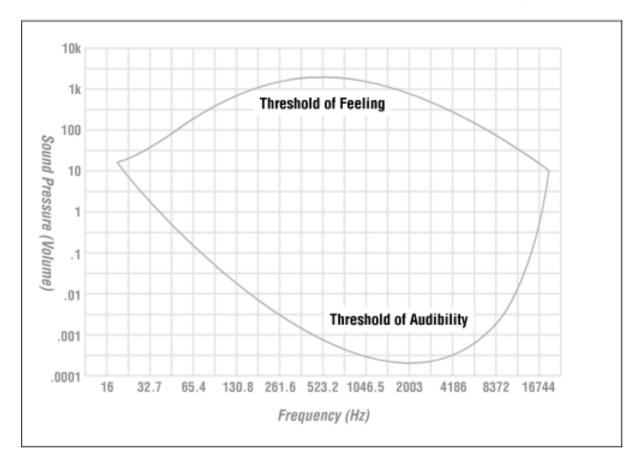
- Recall 64Kbps PCM vs 32Kbps ADPCM
 Prediction! Prediction! Prediction!
- Correlation among consecutive samples!
 residual = sample prediction(last_samples)
- Correlation between (stereo) channels!
 L, R => (L+R)/2, (L-R)/2
- Then attempt entropy encoding

- code smaller values

* the art of coding small values: e.g., differential, logarithm, etc

4

Lossy compression

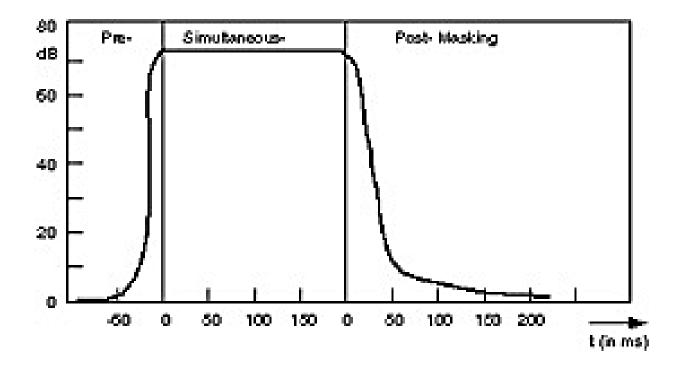

• Why lossy compression?

to get higher compression ratio

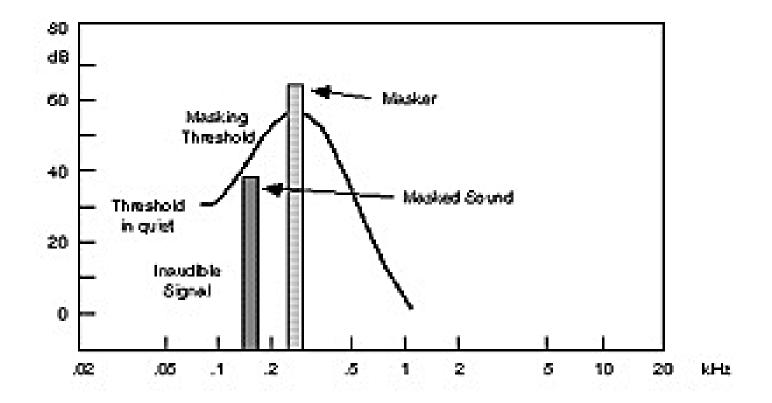
- without degrading audio quality too much
- Why lossy compression is possible?
 audio is a wave of "waves"
 - not all waves are equal for *human* ears
 - wave: frequency, amplitude
- Perceptual audio encoding

* others: represent audio waves by connected line segments (LPC) 5

Not all waves are equal



* too loud or too low to hear (for eardrums)


We only *hear* some waves

- Human psycho-acoustic model
 - frequency range: 20Hz 20KHz
 - most sensitive: 2KHz 4KHz
 - amplitude range: about 96 dB
- Temporal masking
 - "I cannot hear anything now; it was too loud!"
- Frequency masking
 - "I cannot hear this tone while that is around!"

Temporal masking

Frequency masking

1/27/15 CSc 461/561
 * modified discrete cosine transform (MDCT)

MPEG-1 audio

- MPEG-1: VCD (VCR-like quality)
 - 1.2Mbps video (352x240, 30fps)
 - 256Kbps audio (mono or stereo)
- MPEG-1 audio to *approximate* CD quality
 - divide into 32 sub-bands (sub-band coding)
 - consider masking effects
 - discard a sub-band if it's masked by neighbors
 - assign a smaller # of bits given the noise "floor"

MPEG-1 audio layers

- Layer 1: ~4 C/R; 384Kbps for CD quality

 frequency masking
 uniform sub-bands (12*32=384 samples/frame)
- Layer 2: ~6-8 C/R; 192-256Kbps; broadcast
 also temporal masking (3 frames;1152 samples)
- Layer 3 (MP3): ~10-12 C/R; 112-128Kbps

– both types of masking effect and stereo effect

– non-uniform sub-band & quantization, Huffman coding

* MP3 vs Ogg Vorbis

MPEG-1 audio performance

Mean Opinion Score (MOS): score 1~5
– excellent (4.5); very good (4); good (3.6)

– fair	(3.1);	poor	(2.6);	bad	(1.0)
--------	--------	------	--------	-----	-------

Layer	Target	Ratio	Quality at	Quality at	Theoretical
	Bit-rate		64 kb/s	128 kb/s	Min. Delay
Layer 1	192 kb/s	4:1			19 ms
Layer 2	128 kb/s	6:1	2.1 to 2.6	4+	35 ms
Layer 3	64 kb/s	12:1	3.6 to 3.8	4+	59 ms

1/27/15 CSc 461/561
 * non-uniform sampling and quantization

MPEG-2 audio

- MPEG-2: DVD (HDTV quality)
 e.g., DVD movie: 10Mbps
- MPEG-2 (backward compatible) audio
 - mechanisms similar to MPEG-1 audio
 - more sampling rates: <u>16/22/24</u>/32/44/48KHz
 - expanded range of data rates: 8~640Kbps
 - MPEG-1 audio: 32~448Kbps
 - support 5.1/7.1-channel (MPEG-1 audio: 2)

* surround sound systems

CSc 461/561

Advanced Audio Coding (AAC)

- Not backward compatible with MPEG-1 audio
- MPEG-2 AAC
 - 8~96KHz sampling rate (MP3: 32-48KHz)
 - up to 48 main channels
 - data rate: up to 576Kbps
 - CD quality: AAC 96Kbps ~ 128Kbps MP3
- MPEG-4 AAC: LC/HE/SSR-AAC

– e.g., iPod, PSP

* Apple iTune; Google Youtube; etc

Voice codecs

- Telephone (corded, cordless, mobile)
 ITU-T: G.711 64Kbps (PCM), G.721/6 32Kbps (ADPCM);G.728 16Kbps(CELP),G.729 8Kbps
 - GSM:6.5~13Kbps(LPC);4.75~12.2Kbps(AMR)
 - voice detection, discontinuous TX, comfort noise
- Internet (VoIP, music streaming, etc)
 - iLBC (low bitrate): 15Kbps; iSAC: 10~32Kbps
 - SILK: 8~24KHz, 6~40Kbps (used in Skype)
 - Opus: 8~48KHz, 6~512Kbps; SILK, CELT

CSc 461/561

* more at multimedia delivery

1/27/15

This lecture

- Multimedia manipulation
 - audio compression
 - lossless compression
 - predictive coding
 - lossy compression
 - perceptual coding: frequency/temporal masking
- Explore further
 - FLAC: http://flac.sourceforge.net/ => xiph.org
 - http://www.mpeg.org/MPEG/audio

Next lecture

- Multimedia manipulation
 - image compression [Ref: Li&Drew Chap 9]
 - JPEG [9.1-3]