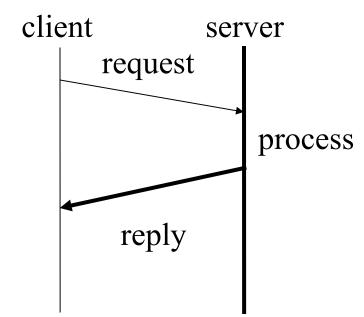
CSc 461/561 Multimedia Systems Review on TCP/IP Networking

Jianping Pan Spring 2015

2/18/15

CSc 461/561

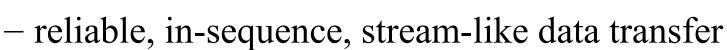

Application-oriented view

- (Old) Applications
 - remote login: e.g., telnet
 - file transfer: e.g., ftp
 - electronic mail: e.g., email
 - world-wide web: the Web!
- Requirements
 - move data from one location to another
 - elastic, error-free, in-sequence
- * now: social networking, online audio/video streaming/gaming, etc

Client-server applications

- E.g., HTTP
 - HTTP client (browser)
 - GET /index.html HTTP/1.1
 - Host: www.example.com
 - (parameters)
 - HTTP server (Web server)
 - HTTP/1.1 200 OK
 - (metadata)
 - (data)

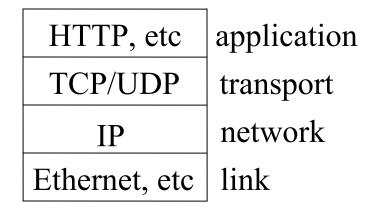
* now: C/S->CDN, P2P, cloud, hybrid, etc, but mostly based on HTTP



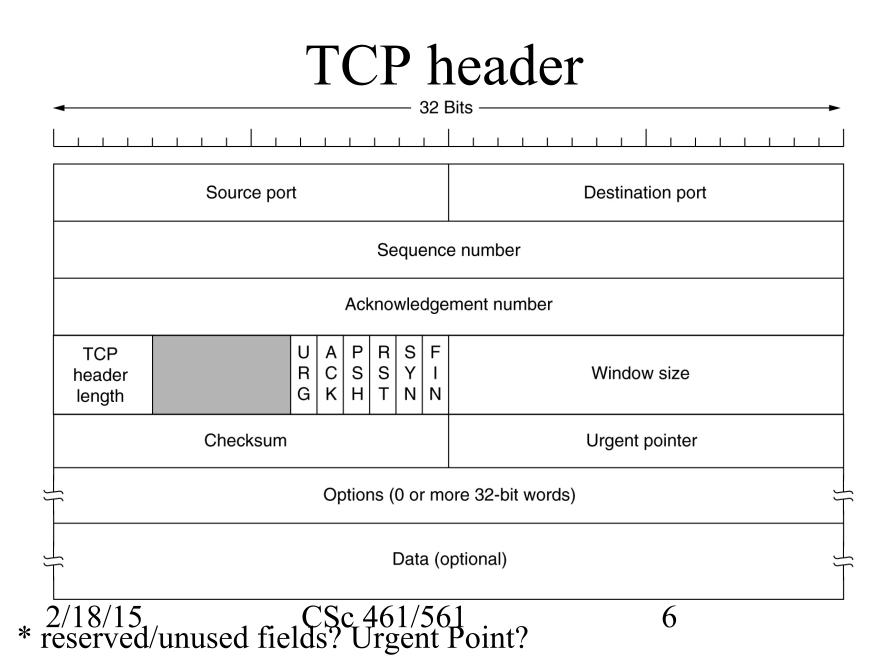
Protocols to support

• TCP/IP

- the Internet Protocol Suite

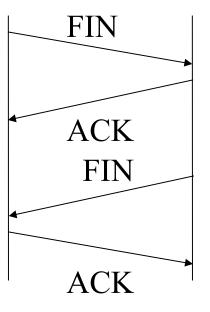

- TCP offers
 - connection oriented

• IP offers


- addressing and routing; connectionless

IP packets may be lost, corrupted, duplicated, reordered
 2/18/15 CSc 461/561 4
 * and still mostly based on TCP/IP

TCP

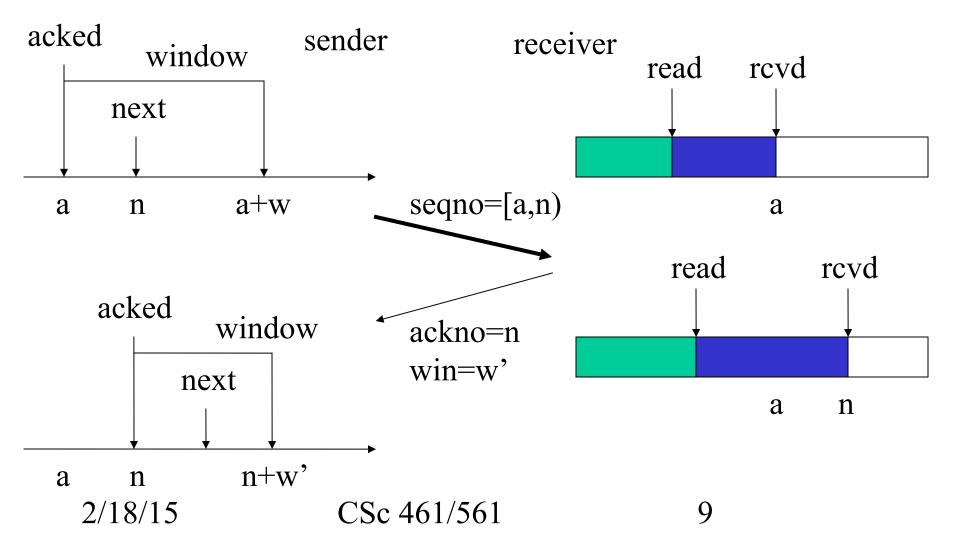

- Connection management
 - through packet handshake (SYN, FIN, ACK)
 - Multiplexing: port number
- Flow, error, congestion control
 - sequence number
 - acknowledgment number
 - window size
 - checksum
- * Transmission Control Protocol, since 1974 5

Packet handshake

connection establishment

initiator responder SYN ACK|SYN ACK connection release

* overhead for short connections and HTTP/0.9->1.0->1.1, 2.0?


Flow control

- Purpose: pace sender and receiver
 according to their buffer size
- Receiver's (advertised) window
 available buffer space
- Sender's window
 - sliding window-based flow control
 - only send data within the window

– sender's window < receiver's window</p>

* other type of flow control: rate-based, better for MM applications?

Sliding window

Error control

- Error detection
 - receiver: sequence number, TCP checksum
 - sender: timeout
- Error notification
 - receiver=>sender: duplicate acknowledgment
- Error recovery

- sender: end-to-end retransmission

* does MM applications need full reliability? 10

Go-back-N retransmission

- Sender: send packet 1, 2, 3, 4, 5, 6
- Receiver: receive packet 1, 2, 3, 5, 6
 cumulatively acknowledge up to packet 3
- Sender: send packet 7, 8, 9
 - timeout for packet 4; retransmit packet 4
- Receiver

- cumulatively acknowledge up to packet 9

• Sender: send packet 10, 11, 12, ... 2/18/15 CSc 461/561 11 * data may come too later or in duplication?

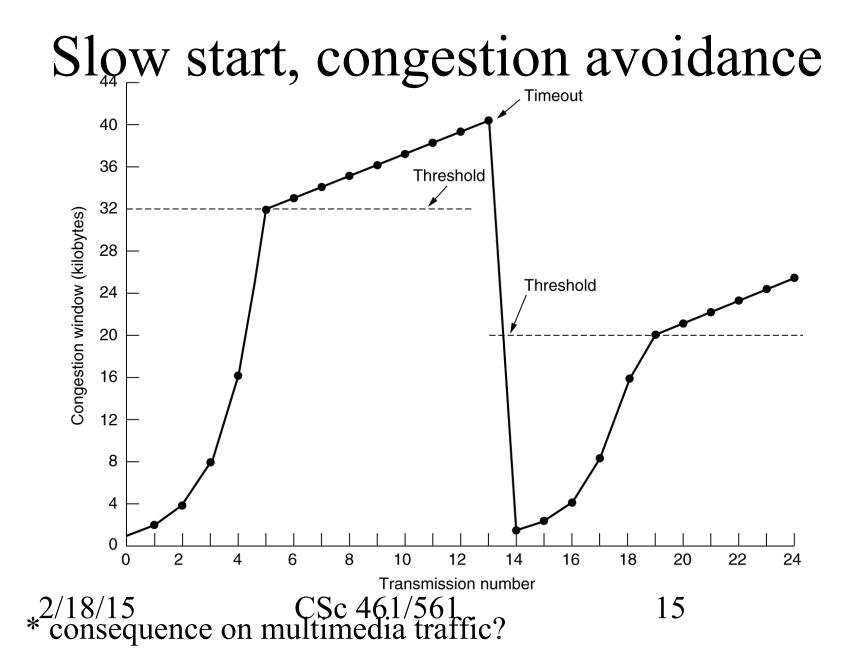
Congestion control

- Was <u>not</u> there when TCP was first designed
- Added to TCP since late 80s
 - heavily coupled with flow/error control
 - heavily explored research topics in decades!
- Purpose: pace sender and network
 - competing flows
 - overload network (e.g., output queue)

cause packet losses when queues overflow
 2/18/15 CSc 461/561 12
 * the centerpiece of Internet research, development and evolution

Congestion window

- Slow start
 - start with an initial congestion window (cwnd)
 - usually initial cwnd = 1 full-size packet
 - double window size every round-trip time until cwnd is above slow start threshold (ssthresh)
- Congestion avoidance
 - increase window size linearly


13

Congestion window: more

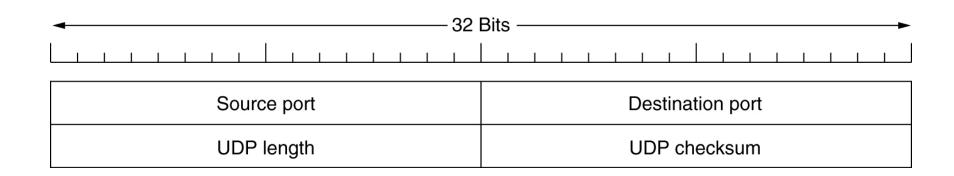
- Back-off
 - when timeout occurs, assume packet loss happened [error control]
 - ssthresh = 0.5 * current_cwnd
 - restart with the initial cwnd
 - retransmit with doubled timer [error control]

14

CSc 461/561

Congestion control: more

- Fast retransmit
 - retransmit with 3 duplicate acknowledgments
 - slow start threshold (ssthresh) to be a half of current congestion window (cwnd)
 - restart with the initial congestion window
- Fast recovery
 - similar to Fast retransmit
 - but restart with cwnd = ssthresh


2/18/15 CSc 461/561 16

UDP

- Why TCP is not enough?
 - sometimes TCP is an overkill
 - e.g., loss-tolerant, delay-sensitive applications
- UDP offers
 - connectionless, datagram-like data transfer
 - no reliability, in-sequence guarantee
 - *flexibility* to plug-in flow/error/congestion etc in application layers

* originally intended for packet audio/video 17

UDP header

2/18/15 CSc 461/561 * very small overhead too!

18

This lecture

- A quick review on
 - Internet Protocol Suite
 - TCP
 - UDP
- Explore further
 - Why TCP header has no "TCP length" field such as "UDP length" in UDP header?

2/18/15

CSc 461/561 19 * connex->wiki permissions issue has been fixed

Next lecture

- IP
- Link: wired and wireless
- Why multimedia networking is different, and difficulty?