CSc 461/561 Multimedia Systems Multicast

Jianping Pan Spring 2015

2/24/15

CSc 461/561

What is multicast?

- Unicast: one sender, one receiver
- Broadcast
 - one sender, all (possible) receivers
- Multicast
 - one sender, many willing receivers
 - many senders, many receivers
- Anycast

- one sender, one of many possible receivers 2/24/15 CSc 461/561 2

Why multicast?

- Some applications involve many parties
 e.g., webcasting, video conferencing
- Multicast can be emulated by
 - a bunch of unicast streams
 - too much replicated traffic!
- A better approach
 - replicate only when it is really necessary

IP multicast, application-layer multicast
 2/24/15 CSc 461/561 3

IP multicast

- Receiver-oriented model
 - willing receivers with a common identity
 - IP multicast address (class D, 224-239.X.X.X)
 - receivers join a multicast group *explicitly*
 - senders does not care
 - senders: even <u>no</u> need to be a member of the group

group

- send packets with destination to the group
- best-effort network: bring packets to receivers
 - flow/error/congestion control: upper layer!
- 2/24/15 CSc 461/561 4

* Steve Deering attended high school at Shawnigan Lake School on Vancouver Island

IP multicast addresses

- Class D IP address
 - 224.0.0.0 239.255.255.255
 - -224.0.0.0 224.0.0.255
 - local network control block
 - 224.0.0.1: all hosts; 224.0.0.2: all routers
 - 224.0.0.22: IGMP
 - 224.0.1.0 224.0.1.255
 - inter-network control block

http://www.iana.org/assignments/multicast-addresses
 2/24/15 CSc 461/561 5

How multicast is done?

- Shared media (i.e., multicast-capable)
 - e.g., Ethernet
 - multicast address: 01-00-5e-0xxxxxx-X-X
 mapped from IP multicast address as a filter
- Non-shared media (by replication)
 - e.g., routers receive packets from one interface
 - replicate and send through all other interfaces with reachable *active* multicast receivers

IGMP

- Internet group management protocol
 - IGMP Join/Report sent by host
 - "I am here and forward me multicast packets"
 - IGMP Query sent by router with timer
 - "are you still there?"
 - membership refreshed by Report sent by host
 - IGMP Leave sent by host
 - explicit in IGMPv2: "I am leaving"
- IGMPv3: source-specific joining and leaving 2/24/15 CSc 461/561 7

Flooding

- Flooding
 - receive from one interface
 - send through all other interfaces
 - broadcast storm problem
- Controlled flooding
 - no packets appear on the same link twice
 - if the packet received before, drop it

– only forward packet from *reverse* shortest path
2/24/15 CSc 461/561 8

Pruning

- Spanning tree
 - no packet received by any node twice!
 - one path from source to any receiver
- If no member in downstream networks
 - by IGMP etc
 - remove such branches
 - periodical flooding or explicit join necessary

prune

Multicast routing

- Essentially, building a tree
 - sender-specific tree; or
 - shared tree, i.e., shared by many senders
- Ideally, the tree should be
 - low cost: overall (for sender) or for receiver
 - balanced among members
 - stable: w.r.t. node joining and leaving
 - it is a HARD problem!

Sender-specific tree

- Shortest path from sender to receivers
 - Dijkstra's algorithm
 - build the tree from the sender
 - add a node (not in the tree) closest to the sender
 - check whether this node can also reduce the sender's distance to other nodes in the tree
 - repeat until all nodes are in the tree
 - node distance should be non-negative

Shared tree

- Minimal spanning tree
 - global knowledge of network topology
 - begin with the link of minimal cost
 - construct tree gradually by adding more links of increasing cost until a tree is formed
- Center-based tree: one node as the "center"
 - Join message sent to the center
 - possibly meet a node already in the group

Multicast routing protocols

- DVMRP
 - extension to DVRP (distance vector-based)
 - flooding and pruning
 - sender-specific tree with reverse shortest path
- MOSPF
 - extension to OSPF (link state-based)
 - global knowledge of network topology, cost etc
 - shortest path tree

PIM

- Independent of underlying routing protocol
- Dense mode: densely packed members
 - sender-specific tree
 - flood and prune
 - reverse shortest path
- Sparse mode: widely scattered members
 - shared tree

– center-based tree at rendezvous point
2/24/15 CSc 461/561 14

Mbone: multicast backbone

- Multicast tunneling
 - traverse "not multicast-capable" networks
 - with <u>tunnel</u> between multicast-capable nodes
 - routers or hosts
- MBone applications
 - vat: visual audio tool
 - wb: white board
 - sd: session directory

Application-layer multicast

- Inter-domain multicast is difficult

 not only in technology, but also in policies
 E.g., MBGP: multicast BGP (shared tree)
- Application-layer multicast
 - <u>end-hosts</u> act as multicast "router" to build trees
 - application-aware flow/error/congestion control
 - not as efficient as IP multicast

but provide more flexibility and easy-to-deploy2/24/15 CSc 461/561 16

This lecture

- Multicast
 - IP multicast; IGMP
 - multicast routing
 - shortest-path tree
 - minimal spanning tree
- Explore-further question
 - discuss the pros and cons of "forward first received only" and "forward received on reverse shortest path only" in controlled flooding

Next lecture

- RTP/RTCP
 - 2nd Ed Chapter 15
 - REF: http://www.cs.columbia.edu/~hgs/rtp/