CSc 461/561 Multimedia Systems Multimedia QoS

Jianping Pan
Spring 2015

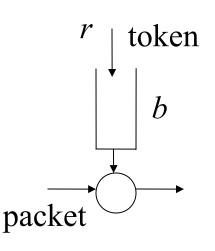
MM application requirements

- The amount of multimedia data is huge
 - many need certain (minimum) bandwidth
 - some can tolerate packet loss to a certain extent
- Multimedia applications often interactive
 - many have upper bound on end-to-end delay
 - some are sensitive to delay variance (jitter)
- Multimedia may involve multiple endpoints
- some need multicast, session management 3/6/15 CSc 461/561 2

MM QoS metrics: example

- Multimedia QoS: timeliness
 - bounded end-to-end delay/jitter
 - interactivity, smooth playback
- Network QoS: delay
 - processing delay (packetization, protocol, etc)
 - transmission delay (bandwidth constraints)
 - propagation delay (distance constraints)
 - queuing delay (store-and-forward, contention)

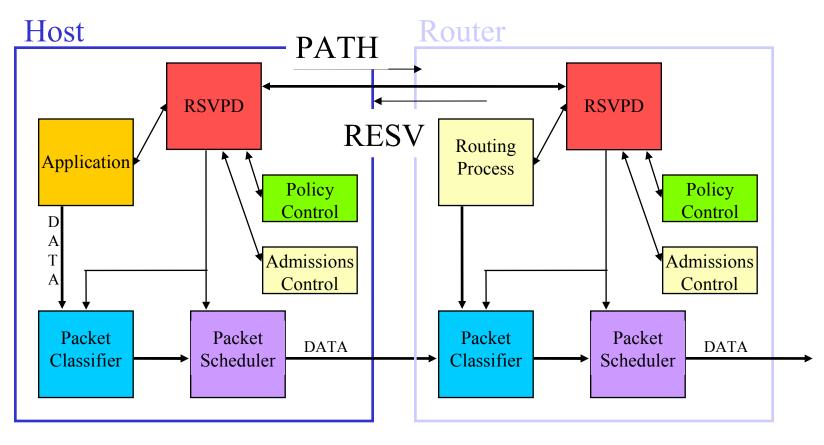
Internet (QoS) status


- Best effort services
 - no (session) admission control
 - no resource reservation
- Drop-tail router queues
 - no packet classification
 - no packet scheduling
- Good for *elastic* applications
- email, FTP, web, etc 3/6/15 CSc 461/561

Internet QoS goals

- RSVP
 - resource reservation
- Integrated Services
 - fine-granularity QoS
- Differentiated Services
 - coarse-granularity QoS
- Other approaches

RSVP design guidelines


- The ReSerVation Protocol
 - upon unicast or multicast routing
 - receiver-oriented
 - soft state
- Per-flow resource reservation
 - flow definition
 - traffic specification
 - leaky token bucket

3/6/15

CSc 461/561

RSVP in action

3/6/15

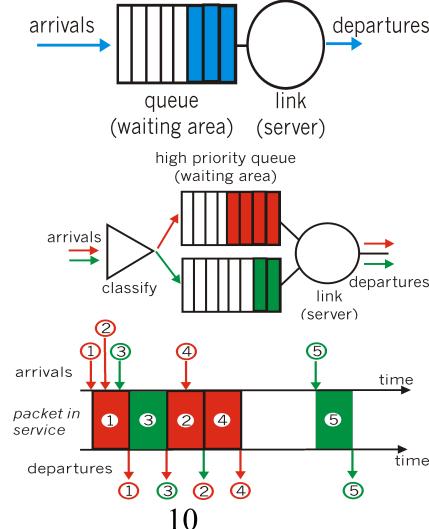
CSc 461/561

RSVP messages

PATH

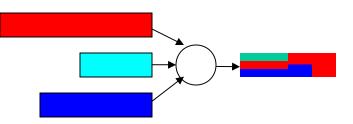
- sender => routers => receiver(s)
- traffic specification (T-spec)
 - token rate, bucket size, peak rate, etc

RESV


- receiver => routers => sender; reserve PATH
- reservation specification (R-spec): e.g., rate
- filters: wildcard, shared, explicit

Integrated Services

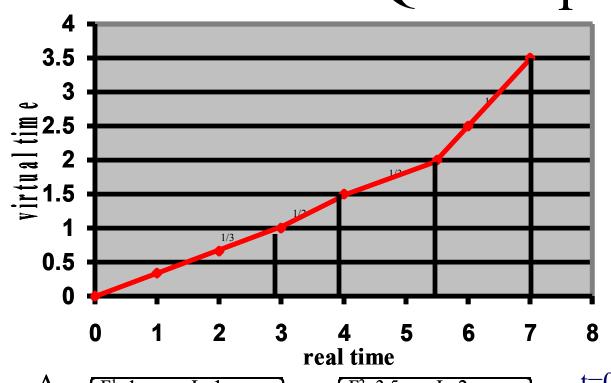
- Guaranteed service
 - emulating dedicated virtual circuit
 - for *hard* real-time applications
 - bounded queuing delay, admission control
- Controlled-load service
 - equivalent to best-effort in <u>unloaded</u> condition
 - for *adaptive* real-time applications
 - e.g., measurement-based admission control

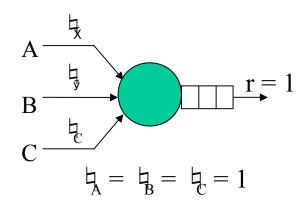

Queuing and scheduling

- First-Come-First-Serve
 - when queue is full
 - drop tail
 - drop head
 - random drop
- Priority
- Round robin
 - weighted round robin

General processor sharing

- GPS: ideal case
 - treat data as <u>fluid</u>




- serve active flows simultaneously
 - fair allocation among active flows
- not realizable
 - network handles packets
 - packets of different size
 - arriving at different time

Weighted fair queuing

- Packetized GPS: approximation
 - serve packet by packet
 - pick the first one to *finish* in GPS
 - virtual time: round number (variable in real time)
 - assume active flows served one bit in each round
 - update finish round number upon packet arrival
- WFQ: weighted fairness
 - bounded difference with GPS

WFQ example

A $F^{1}=1$ L=1

 $F^2=3.5$ L=2

В

 $F^{1}=2 \qquad L=2$

 \mathbf{C}

F¹=2 L=2 CSc 461/561

t=0: Packets of sizes 1,2,2 arrive at connections A, B, C.

t=4: Packet of size 2 arrives at connection A

13

Differentiated Services

- Issues with IntServ
 - scalability: per-flow
 - flexibility: two QoS classes
- DiffServ: new approach by IETF
 - more work at edge routers
 - classifying, metering, marking, shaping
 - less work at core routers
 - forwarding based on DSCP and PHB

Per-Hop-Behavior

- Expedited Forwarding (EF)
 - guarantee a minimum rate for EF
 - admitted based on peak rate
 - virtual circuit like
- Assured Forwarding (AF)
 - service classes (e.g., gold, silver, bronze)
 - a few drop priorities in each class

This lecture

- Multimedia QoS
 - QoS metrics in different layers
 - IntServ and DiffServ
 - -RSVP
 - Queuing and scheduling
- Explore further
 - GPS bounds
 - WFQ and variants (SCFQ, WF²Q, etc)

Next lecture

• Multimedia congestion control