CSc 461/561 Multimedia Systems Multimedia Streaming

Jianping Pan
Spring 2015

Streaming applications

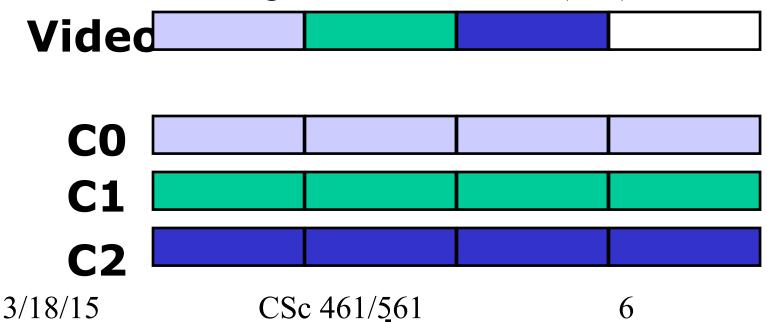
- Usually multimedia streams, e.g.,
 - video on demand (stored streaming)
 - web-cast (live streaming)
- But can involve
 - streaming server(s), e.g., CDN
 - (potentially many) streaming clients
- Challenges
- performance (at client), scalability (at server) 3/18/15 CSc 461/561 2

Unicast streaming

- One streaming channel per client
 - no client waiting
 - except buffering delay to absorb network jitter
 - independent operations (high interactivity)
- Server overhead
 - proportional to the number of clients
 - e.g., the number of channels
 - does not scale well w/ a large number of clients

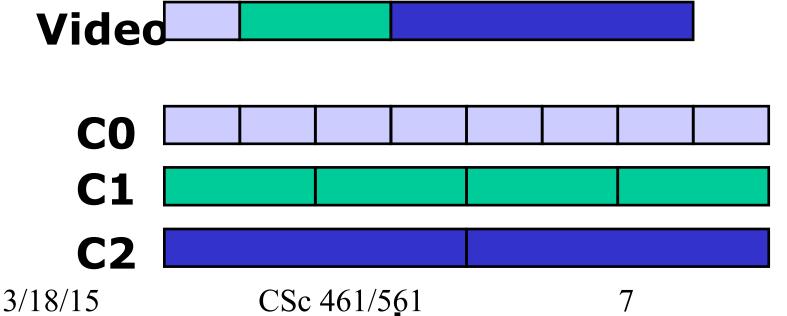
Batch streaming

- Approach: aggregate client requests
 - e.g., preprogrammed regular pay-per-view
 - appear to be "fewer" client requests
 - have to wait for other clients (for how long?)
- Technique: multicast to the client group
 - or broadcast to all clients with a key
 - reduced server overhead
 - proportional to the number of client groups

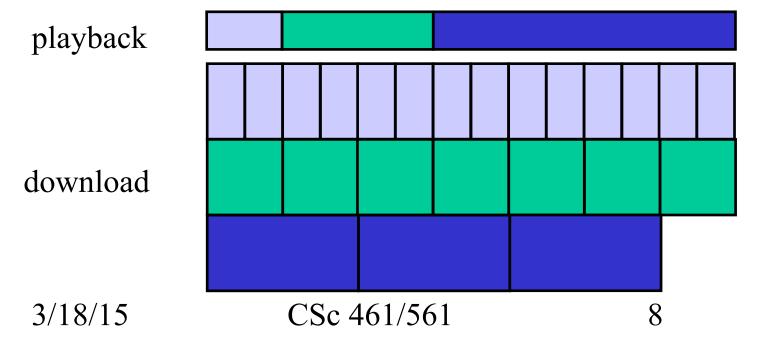

3/18/15 * e.g., premier PPV/cable TV channels

Staggered broadcast

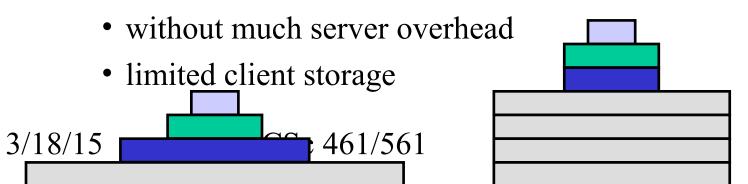
- Data centric approach
 - staggered broadcast in different (sub)channels
 - repeated broadcast in one (sub)channel
- Technique
 - clients: pick the (earliest-to-start) channel
 - bounded waiting time
 - server overhead: # of (sub)channels
 - proportional to the number of channels
- * e.g., movie X of 2 hours on channel 1 at 1am, 2 at 2am, 1 at 3am, etc


Periodic broadcast

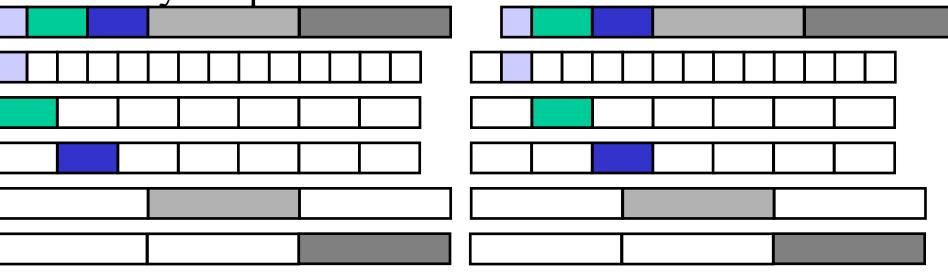
- Approach
 - dealing with (smaller) segments
 - broadcast segments in different (sub)channels


Pyramid broadcast

- Approach
 - segments of increasing sizes
 - (smaller) initial waiting time


Pyramid broadcast: more

- Client technique
 - playing while further buffering (how much?)
 - playback rate vs download rate

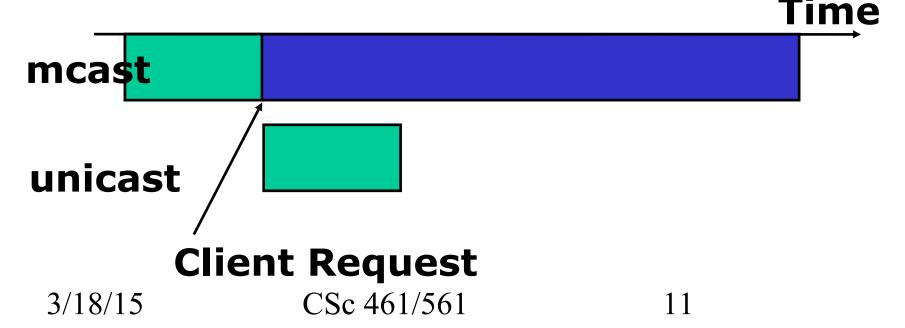

Periodic broadcast: more

- Permutation-based pyramid broadcast
 - lower client storage requirement (~20%)
 - at the cost of (slightly) higher server overhead
- Skyscraper
 - e.g., segment size: 1, 2, 2, 5, 5, 12, 12, 25, ...
 - − even lower client storage requirement (~10%)

An art of segment size

Skyscraper

- Pagoda: 1, 3, 5, 15, 25, 75, 125, ...
- Harmonic: equal segment size, variable bw


3/18/15

CSc 461/561

10

Patching

- The combination of multicast and unicast
 - multicast: what's still available
 - unicast: what's missing

Patch or not to patch

- When a client request comes
 - initiate a new multicast, or
 - join an existing multicast with a unicast
- Balance
 - overall (multicast+unicast) overhead
 - given a request arrival pattern
- Patch window
- initiate a new moast after the PW of the old one 3/18/15 CSc 461/561 12

Multicast support

- IP multicast
 - IGMP
 - multicast routing
 - M-Bone
- Application multicast
 - hosts act as multicast router
- Peer-to-peer streaming
 - clients also serve other clients *CSc 461/561 e.g., Telus Optik IPTV

This lecture

- Multimedia streaming
 - streaming vs download-and-play
 - streaming techniques
 - unicast
 - broadcast
 - multicast