CSc 461/561 Multimedia Systems Peer-to-Peer Swarms

> Jianping Pan Spring 2015

3/24/15

csc461/561

1

Review: going P2P

- Client-server
 - H server is well-known and serves all client requestsH scalability issue
- Peer-to-peer
 - \dot{H} structured or unstructured
 - H every peer is a (potential) server
 - search is a challenge
 - H one request is still served by one peer
 - until the peer fails, then try to use another peer

3/24/15 csc461/561 2

Napster and Gnutella

- Napster
 - H centralized directory server
 - list uploading and query handling H peer-to-peer file download
- Gnutella
 - H fully distributed
 - scoped flooding search
 - H peer-to-peer file download
- Improving Gnutella

H node hierarchy; non-flooding search

3/24/15 csc461/561

Q: more design space to explore?

More design choices

- If more than one peer can serve, why do they not serve the same request together?
- Benefit
 - H more resilient to node dynamic
 - does not rely on any particular peer
 - $\acute{\mathsf{H}}$ fit better with the asymmetric access link
 - higher download bandwidth than upload
- Overhead
 - \hat{H} how to get served from multiple peers

• work together constructively 3/24/15 csc461/561

The BitTorrent approach

- Chop a file into small, fixed-size pieces
 Ĥ e.g., pieces (usually 256 KB each)
 Ĥ and then into blocks (usually 16 KB each)
- .torrent

H meta information about the fileH out-of-band retrieval

• Tracker

H return a list of peers may have some pieces

• Seed and leecher/downloader

H peers have the complete/incomplete file3/24/15csc461/5615

.torrent

- Tracker URL
- File info

H name, length

• Piece info

H length, hash

• Other info

H date, comment, etc

• Bencoding

H strings, integers, lists, directories
H e.g., 4:*spam*, i3e, 14:*spam4:eggs*e, d4:spam11:a1:bee
3/24/15 csc461/561 6

Tracker protocol

- HTTP GET request
 - H info_hash: to identify the file
 - H peer_id: of the requesting peer
 - $\acute{\mathsf{H}}$ client address and port: to respond to incoming requests
 - H bytes uploaded, downloaded, left, etc
 - $\acute{\mbox{H}}$ numwant: the number of peers in the response list
- Tracker response
 - H failure reason, if any
 - H contact interval
 - H peer list and stat (seed and leecher, etc)
- Tracker-less mode (on Kademlia DHT) 3/24/15 csc461/561 7

Tit-for-tat

- Download while upload: tit-for-tat

 H upload to whom from which download: trading pieces
 H prevent free-riding
 - fairness?
- Choking/unchoking
 - H a limited number of uploads
 - default: 4+1
 - $\ensuremath{\check{H}}$ evaluate peers based on their recent download speed
 - 20-second average

 $\ensuremath{\check{H}}$ upload to the peers with the fastest download speed

8

• adjust every 10 seconds 3/24/15 csc461/561

Optimistic unchoking

- Stuck with poor peers?
- Optimistic unchoking
 - $\ensuremath{\check{\mathsf{H}}}$ upload to other peers as well
 - rotate every 30 seconds
 - H hope to get better downloadH also help bootstrap other peers
- Seed's unchoking

H seed does not download from other peers
H try to equally distribute its upload to leechers
H or upload to the one downloads fastest
3/24/15 csc461/561 9

Peer wire protocol

- Messages over TCP
 - H handshake
 - H keep-alive
 - H choke/unchoke
 - H interested/not-interested
 - a block is downloaded if the client is interested and unchoked
 - $\ \ \,$ a block is uploaded if the peer is interested and unchoked H have

10

- advertise new pieces
- H request/piece

• request blocks in a piece 3/24/15 csc461/561

Piece selection

- Initially, a few random pieces
 H anything is better than nothing
 H easy to find at the beginning
- Then, rarest-first in neighborhood
 H become less dependent on seed
 H more interested by peers
- Finally, "end game" mode

 H look for missing pieces aggressively
 H send requests to all peers
 H cancel requests after last pieces are collected

This lecture

• BitTorrent

H P2P swarming

H protocol overview

- Explore further
 - H measurement-based modeling
 - H measurement-based performance analysis
 - H BitTorrent extensions
 - http://wiki.theory.org/BitTorrentSpecification

Liu, Y. and J. Pan, "The impact of NAT on BitTorrent-like P2P systems," in Proc 9th IEEE International Conference on Peer-to-Peer Computing (P2P'09), Seattle, WA, USA, Sept 8-11, 2009. 3/24/15 csc461/561 12