CSc 461/561 Multimedia Systems Large-Scale Video Streaming

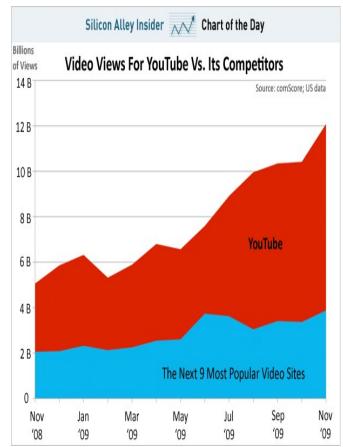
> Jianping Pan Spring 2015

3/25/15

csc461/561

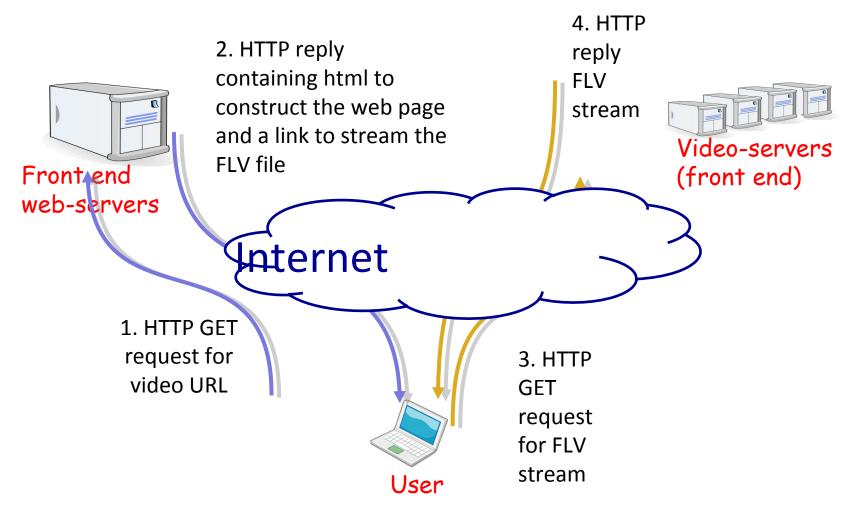
Large-scale video streaming

- Over the Internet
 - short videos, long videos, etc
 - news clips, TV shows, movies, etc
 - copyrighted, user-generated, free
- Using different technologies and combinations
 - CDN or multi-CDN: YouTube, NetFlix, etc
 - P2P:e.g., PPLive, UUSee, PPStream, Joost, etc
 - P2P/cloud-assisted, hybrid, and beyond
- How to put pieces together---in the real world 3/25/15 csc461/561 2


Why YouTube?

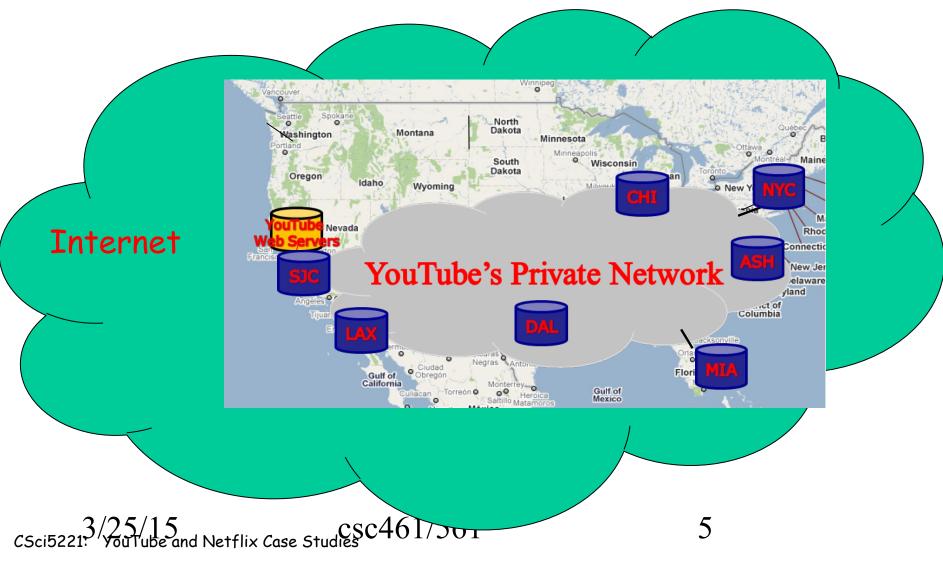
World's largest (mostly user-generated) global (excl. China) video sharing service

- More than 13 million hours of video were uploaded during 2010 and 35 hours of video are uploaded every minute.
- More video is uploaded to YouTube in 60 days than the 3 major US networks created in 60 years
- 70% of YouTube traffic comes from outside the US
- YouTube reached over 700 billion playbacks in 2010
- YouTube mobile gets over 100 million views a day

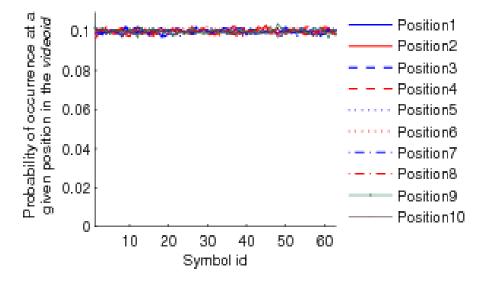

By some estimates, 5%-10% global (inter-AS) Internet traffic (2007-2009 estimate)

- up to 20% HTTP traffic (2007 estimate) 3/25/15 CSci5221: You Tube and Netflix Case Studies

3


YouTube Video Delivery Basics

4


CSci5221? You Tube and Netflix Case Studies CSc461/561

YouTube Data Center Locations (prior Google Re-structuring)

YouTube Video Id Space

- Each YouTube video is assigned a unique id e.g., http://www.youtube.com/watch?v=tObjCw_WgKs
- Each video id is 11 char string
 - first 10 chars can be any alpha-numeric values [0-9, a-z, A-Z] plus "-" and "_"
 - last char can be one of the 16 chars {0, 4, 8, ..., A, E, ...}
- Video id space size: 64¹¹
- Video id's are randomly distributed in the id space

6

CSci5221: /25/15 CSci5221: /Jou Tube and Netflix Case Studies

Physical Cache Hierarchy & Locations

- ~ 50 cache locations
- ~40 primary locations
 - including ~10 non-Google ISP locations
- 8 secondary locations
- 5 tertiary locations

Geo-locations using

- city codes in unicast hostnames,
 e.g., r1.sjc01g01.c.youtube.com
- low latency from PLnodes (< 3ms)
- clustering of IP addresses using latency matrix

YouTube Study Summary

- YouTube: largest global video sharing site
- "Reverse-Engineering" YouTube Delivery Cloud
- comparative study of pre- vs. post-Google restructuring
- Google's YouTube design provides an interesting case study of large-scale content delivery system
- employs a combination of various "tricks" and mechanisms to scale with YouTube size & handle video delivery dynamics

* now youtube is DASH-like too

represents some "best practice" design principles?

3/25/15 5221: You Tube and Netflix Case Studies

•[Video quality adaptation: users have to select manually!] Interplay with ISPs and socio-technical interplay Lessons for "future" content-centric network design shed light on limitations of today's Internet architecture

What Makes Netflix Interesting?

- Commercial, feature-length movies and TV shows
 - and not free; subscription-based
- Nonetheless, Netflix is huge!
 - ~25 million subscribers
 - ~20,000 titles (and growing)

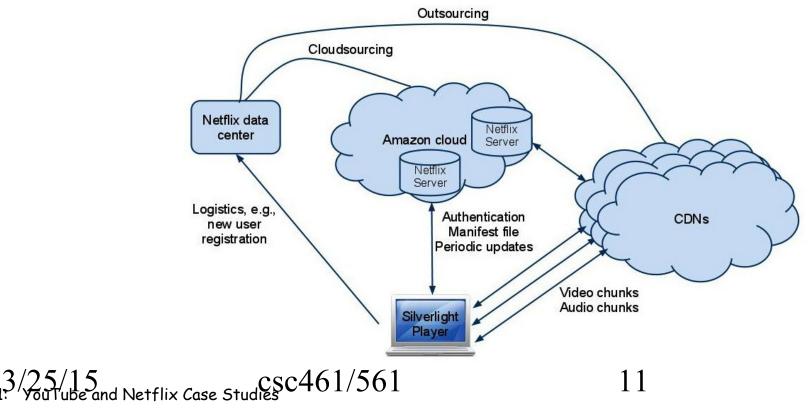
ci5221: 3/25/15 csc461/561

- consumes 30% of peak-time downstream bandwidth in North America
- Netflix has an interesting (cloud-sourced) architecture

	Upstream Traffic		Downstream Traffic		Total Traffic	
Rank	Application	Share	Application	Share	Application	Share
1	BitTorrent	52.01%	Netflix	29.70%	Netflix	24.71%
2	HTTP	8.31%	HTTP	18.36%	BitTorrent	17.23%
3	Skype	3.81%	YouTube	11.04%	HTTP	17.18%
4	Netflix	3.59%	BitTorrent	10.37%	YouTube	9.85%
5	PPStream	2.92 %	Flash Video	4.88%	Flash Video	3.62%

Table 1 - North America - Top Applications by Bytes (Peak Period, Fixed Access)

9


What Makes Netflix Interesting?

- Commercial, feature-length movies and TV shows
 - and not free; subscription-based
- Nonetheless, Netflix is huge!
 - 25 million subscribers and ~20,000 titles (and growing)
 - consumes 30% of peak-time downstream bandwidth in North America
- A prime example of cloud-sourced architecture
 - Maintains only a small "in-house" facility for key functions
 - e.g., subscriber management (account creation, payment, ...)
 - Majority of functions are sourced to Amazon cloud (EC2/S3)
 - user authentication, video search, video storage, ...
 - DNS service is sourced to UltraDNS
 - Leverage multiple CDNs for video delivery
 - Akamai, Level 3 and Limelight
- Can serve as a possible blue-print for future system design
 - (nearly) "infrastructure-less" content delivery -- from Netflix's POV
 - minimize capex/opex of infrastructure, but may lose some "control" in terms • 10

3/25/15 CSci5221: You Tube and Netflix Case Studies C461/561

Netflix Architecture

- Netflix has its own "data center" for certain crucial operations (e.g., user registration, billing, ...)
- Most web-based user-video interaction, computation/storage operations are cloud-sourced to Amazon AWS
- Video delivery is out/cloud-sourced to 3 CDNs
- Users need to use MS Silverlight player for video streaming

Netflix Videos and Video Chunks

- Netflix uses a numeric ID to identify each movie
 - IDs are variable length (6-8 digits): 213530, 1001192, 70221086
 - video IDs do not seem to be evenly distributed in the ID space
 - these video IDs are not used in playback operations
- Each movie is encoded in multiple quality levels, each is identified by a numeric ID (9 digits)
 - various numeric IDs associated with the same movie appear to have no obvious relations

Netflix Videos and CDN Namespaces

Netflix video streaming is handled directly by CDNs

•How are Netflix videos mapped to CDN namespaces & servers?

Limelight:

http://**netflix-094**.vo.llnwd.net/s/stor3/384/534975384.ismv/range/0-57689? p=58&e=1311456547&h=2caca6fb4cc2c522e657006cf69d4ace

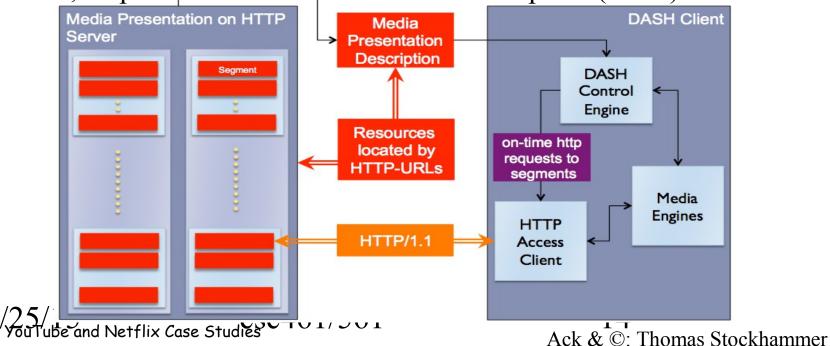
Akamai:

http://**netflix094**.as.nflximg.com.edgesuite.net/sa53/384/534975384.ismv/range/0-57689? token=1311456547_411862e41a33dc93ee71e2e3b3fd8534

13

Level3:

http://nflx.i.ad483241.x.lcdn.nflximg.com/384/534975384.ismv/range/0-57689? etime=20110723212907&movieHash=094&encoded=06847414df0656e697cbd


CSci5221: 25/15 CSci5221: CSci522: CSci52: CSci52: CSci52: CSci52: CSci52: CSci52: CSci52: C

DASH: dynamic adaptive streaming over HTTP

Not really a protocol; it provides formats to enable efficient and high-quality delivery of streaming services over the Internet

- Enable HTTP-CDNs; reuse of existing technology (codec, DRM,...)
- Move "intelligence" to client: device capability, bandwidth adaptation, ...

In particular, it specifies Media Presentation Description (MPD)

There is no Single Best CDN

CSci5221: 700 Tube and Netflix Case Studies CSc461/561

Netflix Study Summary

- Netflix employs an interesting cloud-sourced architecture
 - Amazon AWS cloud + 3 CDNs for video streaming
- Netflix video streaming utilizes DASH
 - enables it to leverage CDNs
 - performs adaptive streaming for feature-length movies
 - allows DRM management (handled by Netflix + MS Silverlight)
- Load-balancing, cache misses or other video delivery dynamics are handled internally by each CDN
- Netflix uses a static ranking of CDNs (per user)
 - multiple CDNs are used mostly for the fail-over purpose
 - how the static ranking is determined is still a mystery (to us!)
- More "intelligent" CDN selection is possible to further improve userperceived quality (and make them happier!)
 - As higher resolution/3D movies come into picture, these improvements will have a considerable impact

16