Tera Hz Communications

Suhas Prahalada

Outline

- Need for higher data rates.
- Introduction to THz.
- Challenges.
- Technology Overview.
- Sources/Detectors.
- Applications.
- Summary and Next Steps for THz Comm.

Evolution of data rates

Source: Towards 100-Gb/s wireless using THz waves. March 2011

Need for higher data rates

- 60 GHz standards currently available offer data rates of 6 -7 Gbit/s.
- Assuming development observed in future we need wireless 100 Gbit/s around 2020.
- Higher channel bandwidths (25-100 GHz) needed to achieve this high data rates.

Why choosing THz frequencies ?

 Spectrum allocations by the ITU below 300 GHz:
3 kHz
300 kHz
300 kHz
300 kHz

No free spectrum available below 300 GHz to achieve such high data rates.

Atmospheric Attenuation

Channel Modeling

- Propagation attenuation
 - Total path loss = free space loss + atmospheric attenuation.
- Challenge: Very high attenuation.
- Solutions
 - 1. Transmission in atmospheric windows.
 - 2. LOS connection with AWGN conditions.

Challenges in THz channel

High free space loss and atmospheric attenuation. LOS or directed NLOS required. Shadowing by objects or persons. High reflection loss. THz waves are transparent for smoke and fog.

Challenges for prototype

Propagation

- High gain antennas to overcome high path loss.
- Technology
 - Optical or electro-optical generation/detection of THz signals.
 - Electronic devices with transit frequencies beyond 1THz.
- Transmission and Networking
 - Appropriate solutions for PHY and MAC layer need to be defined.

Antenna needed

- Quarter wave antenna problem: At 300 GHz (1 mm wavelength) maximum Omni-directional antenna size is 250 microns.
- Antenna array for beam forming and beam switching.
- Wave shaping/steering capabilities of programmable Metamaterials.

Sources

- Two main approaches for THz implementation
 - Optical approach
 - Challenge: lowering the operation frequency.
 - CO₂ Pumped laser, Terahertz pulse methods.
 - Electrical approach
 - Challenge: raising the operation frequency.
 - Gunn Diodes/Mixers.

Approaches: Electronics vs photonics

Electronics based Tx

Photonics based Tx

Rx: Technologies

Heterodyne detection

Direct detection

Source: Towards 100-Gbit/s Wireless Using Terahertz Waves, March 2010.

Gunn & Tunnett diodes

- High power but limited frequencies available.
- Multipliers need to be used for extending band.
- Handling heat and power is a problem.
- Semiconductor, electrical devices attractive but not very developed for practical use.

Photonics Sources

Quantum Cascade Laser

- High output power
- Require sophisticated fabrication process.
- Low temperature operation
- p-Germanium laser
 - 10-100 μW power.
 - 1.0 5 THz tuning range.
 - A cryogenic installation requiring super conducting magnet.

MAC layer functions

Source: MAC layer concepts in THz, EPFL, FEB 11-13, 2013

Latest Results

Carrier Frequency	Technology		Max. Bit rate	Affiliation
	Tx	Rx	(Error free)	Annation
120 GHz	Photonics- based	MMIC(InP) (direct det.)	10 Gbit/s	NTT
120 GHz	MMIC(InP)	MMIC(InP) (direct det.)	20 Gbit/s (with pol.MUX)	NTT
300~400GHz	Photonics- based	Disc. comp. (direct det.)	24 Gbit/s	Osaka-U NTT

- 100 Gb/s reported, but not error free (FEC was used with other signal processing).
- MAC layer concepts for THz communication are being studied.

Applications

- Kiosk Downloading.
- Next Gen WLAN/WPAN.
- THz nano cells for mobile NW.

THz imaging for explosives detection.
Fixed Wireless access using highly directive antennas.

Summary and Next Steps

- Recent advancements in technology show wireless communications @ carrier frequencies beyond 300GhZ possible.
- Development of better sources, modulators and detectors needed.
- Communications standard initiatives begun (802.15 IG THz).

THANKYOU