CAREER COLUMN
15 March 2019
A student’s guide to undergraduate research
Shiwei Wang describes how to find work in a laboratory and make the most of it while studying for your science degree.
Shiwei Wang
I have thoroughly enjoyed my experience working in a materials-chemistry laboratory at Northwestern University in Evanston, Illinois, for the past two years. Being able to mix an undergraduate education with original research in a proper laboratory has been a fantastic opportunity.
Three months into my first year of college, I contacted a professor about working part-time in their lab, and I was fortunate enough to be recruited. My project resulted in me being named as co-first-author on a paper1, and the group feels like family. The experience helped to prepare me for graduate school and made me realize which aspects of science I am passionate about.
However, I also struggled to cope with failure, with balancing my undergraduate classes with research responsibilities and with the internal pressure I imposed on myself to make the project work. Looking back, I wish someone had told me what to expect and offered advice on how to get the most from my research. Because there are few guides for undergraduate researchers, here is some advice based on my experiences.
Choose the right lab
Learn to think like a scientist. A lot of people start their undergraduate research by glancing at the faculty list and e-mailing multiple professors whose work seems interesting. Although this might get you a position somewhere, it is not the most effective approach. Before looking at labs, dive into the science to find out which areas fascinate you. Read a lot, go to talks, and talk to your professors not just about their classes, but about science in general as well.
Subscribe to e-mail newsletters from journals such as Nature and Science. Try to read research highlights and science news regularly. Podcasts and articles by, for example, Nature, Science, Scientific American or Quanta can also be interesting sources of information. Follow academics, journals and universities on Twitter. Start your undergraduate research by learning more about science, thinking like a scientist and working out what you love.
Look for questions, not subjects. You might have chosen a major to study, but don’t let this limit your search for research labs. Modern labs are interdisciplinary and very different from what you do in undergrad labs. Instead of limiting your search to your department, try to look at labs in all related departments. Choose labs on the basis of the questions they’re trying to answer.
Mentoring is as important as research. Contact group members to learn about your prospective laboratory’s environment. Are the group members close? Is the lab friendly or competitive and condescending? Is the lab head hands-off or hands-on? The size of the group is also important. If you join a small group, you’ll have a higher chance of being mentored directly by your principal investigator, whereas in a big group, you are more likely to be mentored by a postdoctoral researcher or graduate student.
Reach out with confidence. Once you’ve determined that the research programme interests you and the group dynamic is healthy, send the principal investigator an e-mail. Make sure to explain why you’re interested in working in the lab and that you have spoken to other lab members. Be patient if they don’t reply. If you don’t receive a response after a week or so, send a second e-mail or reach out in other ways, such as by asking group members to enquire for you.
Get the most out of the experience
Start your research with reading, and keep on reading. Usually, the principal investigator will assign you a mentor and a project. Ask for literature to read: learning about the state of the field and why the work is important will help you to push the project forward. Read about your field as well as other, totally unrelated fields. As an undergraduate, you have the freedom to change your major and your future plans. Make sure to strike a balance between reading and conducting experiments. It’s hard to do both at the same time, but it will make you a better scientist.
Set specific goals for yourself and let your mentors know. Think about what you want from your research and how much time you are willing to put in. Besides learning the techniques, do you want to learn how to analyse results and design experiments? Do you want to learn how to write proposals by applying for undergraduate research grants? Do you want to improve your presentation skills by going to conferences? Do you want to potentially finish a project for publication? Working out what you want to achieve will help you to direct your time effectively.
Research takes time. Don’t blame yourself if experiments don’t work or the project is not moving forward as fast as you expected. Science is about failing and trying again. Getting used to and coping with frustration is part of the learning curve of research.
Find a healthy balance. University is already a lot of work, and research will only take up more time. When planning your schedule, try to allocate large blocks of time (whole afternoons or individual days) to research. Rushing through a procedure could be unsafe and will often produce useless results. Always plan extra time for experiments. Consider working less in the lab during exam weeks so you don’t get overwhelmed. Talk to your mentor about your schedule and feelings regularly, so that you can arrange experiments at times that suit you, and you can keep on top of your mental health.
Find financial support. If you wish to do research at your own institution over the summer, your institution might offer funding to cover your expenses. If you want to go to another university, you can apply for funding from that institution’s undergraduate research programme, or from foundations, companies or academic societies. For example, the US National Science Foundation offers a Research Experiences for Undergraduates programme. Universities, foundations and academic societies might also offer grants to cover your travel expense to various conferences. Don’t let money limit what you want to do. Talk to senior students or professors, or search online to find all the opportunities!
Always think about the big picture. Your undergraduate research doesn’t define what you’re going to do after your degree. Keep reading and taking classes outside your comfort zone. Explore and learn as much as possible. Working out what you love is the best preparation you can get for the rest of your career.
doi: https://doi.org/10.1038/d41586-019-00871-x
This is an article from the Nature Careers Community, a place for Nature readers to share their professional experiences and advice. Guest posts are encouraged. You can get in touch with the editor at naturecareerseditor@nature.com.
References
Wang, S. et al. Preprint at ChemRxiv https://doi.org/10.26434/chemrxiv.7824707.v2 (2019).