
Low-Latency Live Video Streaming over a Low-Earth-Orbit
Satellite Network with DASH

Jinwei Zhao
University of Victoria
Victoria, BC, Canada
clarkzjw@uvic.ca

Jianping Pan
University of Victoria
Victoria, BC, Canada

pan@uvic.ca

ABSTRACT
In light of Starlink’s recent rapid growth in constructing a global
low-Earth-orbit satellite constellation and offering high-speed, low-
latency Internet services, the implications of utilizing Starlink for
low-latency live video streaming, particularly in the context of
its fluctuating latency and regular satellite handovers events, re-
main insufficiently explored. In this paper, we conducted a thor-
ough measurement study on the Starlink access network, examin-
ing its performance across different protocol layers and at multiple
geographical installations, including locations where laser inter-
satellite links are utilized in practice. We performed a comprehen-
sive latency target-based analysis of low-latency live video stream-
ing with three state-of-the-art adaptive bitrate (ABR) algorithms
in dash.js over Starlink. We presented a novel ABR algorithm de-
signed for low-latency live video streaming over Starlink networks
which leverages satellite handover patterns observed from mea-
surements to dynamically adjust video bitrate and playback speed.
The performance evaluation of the proposed algorithm was con-
ducted using both a purpose-built network emulator and actual
Starlink networks. The results demonstrate that the proposed al-
gorithm effectively delivers a better quality of experience for low-
latency live video streaming over Starlink networks, characterized
by low live latency, high average bitrate,minimal rebuffering events
and reduced visual quality fluctuation.

CCS CONCEPTS
• Information systems→Multimedia streaming; •Networks
→ Network performance evaluation.

KEYWORDS
DASH, Starlink, Low-Latency Live Streaming, ABR

ACM Reference Format:
Jinwei Zhao and Jianping Pan. 2024. Low-Latency Live Video Streaming
over a Low-Earth-Orbit Satellite Network with DASH. In ACMMultimedia
Systems Conference 2024 (MMSys ’24), April 15–18, 2024, Bari, Italy. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3625468.3647616

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
MMSys ’24, April 15–18, 2024, Bari, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0412-3/24/04…$15.00
https://doi.org/10.1145/3625468.3647616

1 INTRODUCTION
By integrating the distinct capabilities of space, aerial, and terres-
trial networks, Space-Air-Ground Integrated Networks (SAGINs)
are expected to revolutionize future Internet connectivity through
enhanced flexibility and expansible network coverage. In addition
to supporting the growing traffic of terrestrial networks, SAGINs
will broaden Internet access to remote regions, including rural ar-
eas, oceans, and mountainous terrains [12]. Starlink, a division
of SpaceX [20], stands out as a pivotal player in offering Inter-
net service through a constellation of low-Earth-orbit (LEO) satel-
lites. These mass-produced small satellites bridge the communica-
tion between Starlink user terminals (UTs) and ground stations
(GSs).While the concept of satellite Internet is not novel, Starlink’s
strategy in building a large LEO satellite constellation narrows the
bandwidth and latency gap with conventional terrestrial networks.
Specifically, SpaceX deploys Starlink satellites at an approximate
altitude of 550 km, in contrast to traditional satellite communica-
tion networks that rely on either geosynchronous equatorial or-
bit (GEO) or medium-Earth-orbit (MEO) satellites, which are posi-
tioned at higher altitudes and havewider coverage but suffers from
higher latency and limited capacity. As of December 2023, SpaceX
has more than 5,200 active LEO satellites in operation and attained
global coverage in over 70 countries. Nevertheless, SpaceX’s con-
stellation ambition extends to launching up to 42,000 LEO satellites
and eventually constructing multiple orbital shells [19].

Given the characteristics of LEO satellite networks, UTs utilize
phased array antennas to track the moving satellites and perform
regular handovers between satellites to maintain network connec-
tivity. Tanveer et al. [24] observed that Starlink employs a global
controller for managing the satellite-to-ground scheduling. Specif-
ically, Starlink satellite handover events happen every 15 seconds,
at the 12th, 27th, 42nd, and 57th (12-27-42-57) second past every
minute, synchronized globally. We conducted an extensive mea-
surement study on the Starlink satellite access network, gateway,
point-of-presence (PoP) architectures and global backbone topol-
ogy [18]. It revealed that the round-trip-time (RTT) from the UT to
the GS gateways experiences significant fluctuations and is higher
than that of conventional terrestrial Internet access via fiber optics,
digital subscriber line (DSL), or cable modem.

Regarding the fluctuating latency in Starlink networks, existing
research indicates that Starlink can support a wide range of mul-
timedia services with high-quality assurance, including video-on-
demand (VoD) and live streaming, given adequate playback buffers
are configured properly. However, the performance remains insuf-
ficient for more demanding applications including video confer-
encing, immersive AR/VR/XR applications, 360-degree and volu-
metric video streaming and low-latency live (LLL) video streaming.

https://doi.org/10.1145/3625468.3647616
https://doi.org/10.1145/3625468.3647616

MMSys ’24, April 15–18, 2024, Bari, Italy Jinwei Zhao and Jianping Pan

For VoD services over Starlink, the end-to-end performance is on
par with conventional terrestrial networks [27]. Despite frequent
handover events and occasional outages of Starlink, the large play-
back buffer employed in VoD players is usually adequate to com-
pensate for these interruptions, thereby ensuring a smooth view-
ing experience for end-users. However, in various application sce-
narios, such as live sports events, cloud gaming, and interactive
live broadcasting, the necessity to meet distinct latency targets in-
troduces additional challenges for service providers endeavoring
to ensure a low-latency experience, particularly within Starlink’s
dynamic network environment. Given the widespread adoption of
Starlink globally, the demand for LLL video streaming over satel-
lite networks is undeniably significant. O’Hanlon et al. [17] con-
ducted a comprehensive analysis of the performance of three low-
latency ABR algorithms in dash.js, namely Dynamic, L2A-LL, and
LoL+, considering a variety of latency targets (3, 5.5, 8, and 15 sec-
onds) and configuration options. They employed trace-driven em-
ulations with four different network profiles captured from real-
world terrestrial networks. Nonetheless, it remains unknown how
the fluctuating latency and frequent satellite handover events af-
fect the performance of LLL video streaming ABR algorithms.

In this paper, we conducted a thoroughmeasurement of the Star-
link access network across different protocol layers and geograph-
ical Starlink installations, including one where laser inter-satellite
links (ISLs) are utilized in practice. We performed a latency target-
based analysis of LLL video streaming over Starlink networks. We
proposed a novel ABR algorithm based on contextual multi-armed
bandit (CMAB) algorithms, specifically designed for live streaming
over Starlink networks. CMAB algorithms are lightweight and effi-
cient approaches to online decision-making problems such as the
bitrate adaptation problem in live video streaming. They require
less computational resources than other reinforcement learning-
based algorithms but also provide a competitive performance guar-
antee with a low regret bound. The proposed CMAB-based ABR
algorithm leverages the satellite handover patterns observed from
measurements to dynamically adjust the video bitrate and play-
back speed, thereby ensuring a seamless viewing experience with
high average video playback quality, minimal rebuffering events
and reduced visual quality fluctuation. The main contributions of
this paper are therefore four-fold and can be summarized as fol-
lows:

• Assessed the latency and throughput of Starlink access networks
across different protocol layers and geographical locations, tak-
ing into account scenarios both with and without the utilization
of ISLs.

• Conducted a latency target-based measurement and analysis of
three state-of-the-art LLL video streaming ABR algorithms in
dash.js over Starlink networks.

• Proposed a novel ABR algorithm with satellite handover aware-
ness, improving the Quality of Experience (QoE) of LLL video
streaming over Starlink networks.

• Implemented a prototype of the proposed algorithmwith dash.js
and evaluated its performance using both a purpose-built net-
work emulator and actual Starlink networks.

The remainder of the paper is organized as follows. Section 2
introduces related works in LLL video streaming ABR algorithms

and Starlink measurement studies. Section 3 details the testbed
setup and outlines the results of our measurements. Section 4 for-
mulates LLL video streaming with CMAB algorithms and presents
the design of our proposed algorithm. Section 5 evaluates the per-
formance of the proposed algorithm in both network emulation
settings and real Starlink networks. Section 6 discusses the open re-
search challenges and finally, Section 7 concludes the paper, high-
lighting potential improvement and future work.

2 RELATED WORKS
Over the past decade, numerous ABR algorithms have been pro-
posed to improve the QoE of video streaming in DASH. In this
section, our concentration is on three LLL video streaming ABR
algorithms available in the dash.js [8] reference player, namely Dy-
namic, L2A-LL, and LoL+.

The default Dynamic [21] algorithm is a hybrid ABR algorithm
consisting of throughput-based rule and buffer-based BOLA algo-
rithm [22]. Karagkioules et al. [11] proposed L2A-LL, which uses
online convex optimization to provide robust video bitrate adapta-
tion strategies without relying on specific parameter tuning, chan-
nel model assumptions, throughput estimation or application spe-
cific adjustments. Bentaleb et al. [4] introduced LoL+, a learning-
based ABR algorithm that employs a self-organizing map (SOM) to
adapt the bitrate at every segment download boundary. LoL+ con-
tains four different modules, namely a playback speed control mod-
ule that combines the current latency and buffer level to control
the playback speed; a throughput measurement module that accu-
rately provides throughput estimation based on CMAF chunks; a
QoE evaluation module that computes the QoE considering five
metrics: selected bitrate, number of bitrate switches, rebuffering
duration, latency and playback speed; and a weight selection mod-
ule that implements a dynamic weight assignment algorithm for
the SOM model features.

O’Hanlon et al. [17] conducted a latency target-based analysis
of three ABR algorithms concerning a range of latency targets (3,
5.5, 8, and 15 seconds) and configuration options for the LLL video
streaming performance. The Dynamic algorithm performs the best
in terms of low rebuffering duration, with the least number of stalls
and the shortest overall rebuffering time. In terms of live latency,
the Dynamic algorithm also provides the smallest deviation from
the latency target in all the scenarios evaluated and provides the
most stable but lower video bitrate quality, whilst L2A-LL and LoL+
can reach a higher video quality level. They further demonstrated
the impact of the FastSwitching option in dash.js. When enabled,
this option replaces low-bitrate video segments in the playback
buffer with high-bitrate segments during a quality increase phase,
rather than appending them directly to the end of the current play-
back buffer. However, the FastSwitching option brings a signifi-
cant number of re-requests that consume more bandwidth but do
not generally increase the QoE. Thus, the option is recommended
to be disabled in LLL video streaming.

Since the launch of Starlink’s beta testing in 2020, it has at-
tracted considerable research interest from both the industry and
academia. Research topics span from network measurements [18,
24, 27] to physical layer signal structure analysis [5] and routing
protocol design [26], among others. Zhao et al. [27] conducted

Low-Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH MMSys ’24, April 15–18, 2024, Bari, Italy

Figure 1: Starlink DASH testbed architecture

a systematic measurement on real-time multimedia services over
Starlink, including VoD (YouTube), live video streaming (Twitch)
and video conferencing service (Zoom). The Starlink network typ-
ically delivers satisfactory performance for multimedia services.
However, factors like extreme weather, satellite handover events,
and changes in packet routing paths can impact its performance.
VoD services remain largely unaffected due to their substantial
playback buffers, which can compensate for Starlink’s occasional
short-time outages and frequent satellite handover events. In con-
trast, interactive applications such as video conferencing and live
video streaming, face more pronounced performance challenges.
Tanveer et al. [24] noted a consistent pattern in Starlink’s satel-
lite handover events occurring every 15 seconds. Specifically, these
eventsmanifest in the latency characteristics at the 12th, 27th, 42nd,
and 57th seconds of each minute. We provided comprehensive in-
sights into the access network, gateway, PoP, and backbone net-
work architectures of Starlink, illustrating the findings with de-
tailed network topology diagrams, derived from collaborative mea-
surements across the world [18].

3 MEASUREMENT
In this section, we first present our testbed setup and the measure-
ment results of Starlink networks. We then outline the approach
behind our latency target-based analysis of LLL video streaming
over Starlink networks. The subsequent measurement results for
LLL video streaming, in conjunction with the performance evalua-
tion of the proposed algorithm, are presented in Section 5.

3.1 Setup
The architecture of our Starlink measurement testbed is shown
in Figure 1. For each Starlink installation, we deployed a virtual
machine in the nearest Google Cloud Platform (GCP) availability
zone as the end-to-end latency measurement target and the me-
dia server for LLL video streaming. For example, the Starlink in-
stallation in the Pacific Northwest is associated with the Starlink
Seattle PoP. To minimize additional terrestrial network latency, we

deployed the media server in GCP’s us-west1-a availability zone,
physically located in Oregon, USA. Our measurements indicate
that the network latency between the Starlink Seattle PoP and the
GCP gateway in this availability zone is below 10 milliseconds,
which is negligible compared to the latency of Starlink access net-
works. We also have access to a Starlink installation in Seychelles,
located in thewestern IndianOcean, proximate to the eastern coast
of Africa. As of December 2023, the only Starlink PoP in Africa is
physically located in Lagos, Nigeria [15], which is on the western
coast of the continent. Starlink releases a GeoIP feed detailing their
customer IP allocations1, alongwithDNS PTR records that indicate
the associated home PoP locations2. In Africa, Starlink primarily
serves its subscribers through the Lagos PoP, while occasionally
re-associating users to the Frankfurt PoP and London PoP, possi-
bly due to load balancing and capacity considerations.Throughout
our measurement, the Starlink installation in Seychelles was asso-
ciated with the Lagos PoP. Considering the absence of Starlink GSs
within a 5,000 km radius of this Starlink installation, our inference
is that the packets traverse multiple laser inter-satellite links, com-
monly referred to as ISLs, before being relayed to the GS, reaching
the Lagos PoP, and subsequently access the Internet. We deployed
themedia server for this region in GCP’s europe-southwest1-a avail-
ability zone, physically located in Madrid, Spain, where the Star-
linkMadrid PoP is interconnectedwith Starlink Lagos PoP through
Starlink’s terrestrial backbone infrastructure [18].

We deployed network measurement scripts and the LLL video
streaming stack on amini PC or virtualmachine directly connected
to the Starlink user router via Ethernet. The LLL video streaming
stack consists of a modified dash.js player, a backend server, a Mon-
goDB database and an analysis client. The modified dash.js player
sends the playback metrics to the backend server through REST
APIs, which are then stored in the MongoDB database. The anal-
ysis client queries the MongoDB database after playback sessions

1https://geoip.starlinkisp.net/feed.csv
2https://starlink-enterprise-guide.readme.io/docs/peering-with-starlink

https://geoip.starlinkisp.net/feed.csv
https://starlink-enterprise-guide.readme.io/docs/peering-with-starlink

MMSys ’24, April 15–18, 2024, Bari, Italy Jinwei Zhao and Jianping Pan

Table 1: Starlink access network latency (ms) to GS gateway

Starlink installations Min Median Average 𝜎
Without ISL 16.7 42.8 47.5 20.9
With ISL 59.1 109.0 119.8 43.7

0 200 400 600
RTT (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

With ISL
Without ISL

Figure 2: CDF of the RTT to GS gateway

0 20 40 60
Seconds

45

50

55

60

RT
T
(m

s)

(a) Average RTT without ISL

0 20 40 60
Seconds

110

120

130

RT
T
(m

s)

(b) Average RTT with ISL

Figure 3: Average RTT to gateway at every second

and generates corresponding figures. On each media server, we de-
ployed livesim2 [9], a DASH live source simulator implemented
in Go by the DASH Industry Forum, which takes segmented DASH
source videos as the input assets, and produces a wall-clock (UTC)
synchronized linear stream of video segments. By looping the in-
put VoD DASH assets and dynamically adjusting the timestamps,
a perpetual “live” video stream is made available to the clients. Ng-
inx is installed as the frontend web server to serve the MPD files
and the corresponding “live” video streams.

3.2 Measuring Starlink Access Network
For regular Starlink subscribers, the Starlink user dish can always
reach the GS gateway in one IP hop, at a carrier-grade NAT (CG-
NAT) address 100.64.0.1 [18]. For those on the business or priority
subscription planwith the public address option, they are allocated
a public IPv4 address bounded to their Starlink user routers, which
is reachable from the Internet.

Our first measurement is to evaluate the latency performance of
Starlink access networks. We started with measuring the RTT be-
tween clients and the GS gateway using ICMP ping. The interval
for the ping command is set at 10 milliseconds. We continuously

conducted our systematic latency measurements since November
2023 and released the dataset to the public [28]. In this paper, we
show a snapshot of the measurement results from the Starlink in-
stallations in the Pacific Northwest and Seychelles, with a total
continuous duration of 60 minutes. A summary of the Starlink ac-
cess network latency to the GS gateway is shown in Table 1.

For the Starlink installation without ISL, the overall access la-
tency can easily be maintained at around 50 milliseconds, with the
minimal RTT being 16.7 milliseconds, the median RTT being 42.8
milliseconds and the average RTT being 47.5 milliseconds. For the
Starlink installation with ISL, the overall access latency fluctuated
more than the one without ISL, with the minimal RTT being 59.1
milliseconds, the median RTT being 109.0 milliseconds, the aver-
age RTT being 119.8 milliseconds and a higher standard deviation
𝜎=43.7 milliseconds than 𝜎=20.9 milliseconds without ISL. The cu-
mulative distribution function (CDF) of both latency distributions
is shown in Figure 2.We calculated the average RTT to the GS gate-
way at every second for both Starlink installations, as shown in Fig-
ure 3. It revealed an obvious pattern that at (12-27-42-57) seconds
of every minute, the average RTT between Starlink UTs and their
corresponding GS gateways spikes, which indicates that satellite
handover events happen at synchronized seconds globally at dif-
ferent geographical locations. This observation is consistent with
the findings in [24]. However, our observations in Figure 3 indicate
that the potential impact of satellite handover events is more rela-
tively pronounced on the Starlink installation that did not utilize
ISL during our measurement.

To gain deeper insights into how satellite handover events influ-
ence the end-to-end (E2E) performance of different applications,
we carried out time-synchronized measurements of latency and
TCP throughput, as indicated in Figure 4. E2E latency and through-
put are measured with IRTT and iPerf3 respectively. We deployed
IRTT and iPerf3 daemon programs on the media servers as illus-
trated in Section 3.1 and Figure 1. All the media servers and clients
are configured with NTP time synchronization using chrony and
Google Public NTP service3, such that IRTT can provide accurate
one-way delay (OWD) measurements. IRTT provides latency mea-
surements by sending UDP packets on a fixed time interval re-
gardless of whether replies are received and it is not affected by
the Linux kernel scheduling or other factors that can affect the
packet interval of ICMP ping measurements. By utilizing UDP in-
stead of ICMP, it can also avoid the potential ICMP deprioritization
on some network devices and provide more realistic measurement
results close to real-world applications. In our measurements, the
IRTT request interval is set to 10 milliseconds, consistent with the
ICMP ping experiments. To measure the throughput, we utilized
iPerf3 and set the report interval to 100 milliseconds, which is
the minimal iPerf3 report interval. In this paper, our primary fo-
cus was on evaluating the downlink throughput performance from
the media server to the video streaming clients, aligning with typ-
ical video streaming scenarios. However, a brief discussion on the
uplink performance for live broadcasting scenarios is provided in
Section 6. A single TCP flow was used for all the iPerf3 through-
put measurements and the TCP congestion control algorithm used

3https://developers.google.com/time

Low-Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH MMSys ’24, April 15–18, 2024, Bari, Italy

0 20 40 60 80 100
Time (second)

0

100

200

300

400

500
RT

T
(m

s)
With ISL
Without ISL

(a) E2E latency

0 20 40 60 80 100
Time (second)

0

100

200

300

La
te
nc

y
(m

s)

With ISL
Without ISL

(b) Uplink OWD

0 20 40 60 80 100
Time (second)

0

50

100

150

200

La
te
nc

y
(m

s)

With ISL
Without ISL

(c) Downlink OWD

0 20 40 60 80 100
Time (second)

0

50

100

150

200

250

Th
ro
ug

hp
ut
 (M

bp
s)

With ISL
Without ISL

(d) Downlink throughput

Figure 4: Time synchronized latency and throughput mea-
surements

is CUBIC, which is the default congestion control algorithm in the
Ubuntu 22.04 operating system we used.

Figure 4 shows a 2-minute window of the time-synchronized la-
tency and throughput measurements. There is a notable variance
in latency patterns across each 15-second interval. At the bound-
aries of each timeslot, both the uplink and downlink OWD ex-
hibit surges, aligning with the satellite handover events. Regard-
ing OWD, the downlink OWD exhibits a more pronounced “strip
band” pattern compared to the uplink OWD, especially for Star-
link installations without ISL in Figure 4(c). This distinction likely

Table 2: Bitrate ladder of the LLL video dataset

Resolution Frame rate (fps) Encoding bitrate (Kbps)
1920x1080 50 6000
1920x1080 25 5100
1920x1080 50 4900
1024x576 25 1500
1024x576 25 1200
768x432 25 900
512x288 25 450
480x270 12.5 300

arises because downlink access is allocation-based, designating spe-
cific timeslots in a media access frame for a particular UT. Con-
versely, the uplink operates on either a contention-based system
or a poll-randomize-grant mechanism [10]. Figure 4(d) shows the
instantaneous downlink throughput measurements. It shows that
while the RTT might stay relatively stable across different times-
lots as the satellite handover events happen, the client and server
might have to go through the TCP slow start pattern because of
RTT timeout or due to packet loss, which can significantly impact
the TCP throughput performance. It is important to note that the
utilization of ISL does not directly impact downlink throughput. In-
stead, it is influenced by Starlink’s capacity limitations andQuality
of Service (QoS) policies in different regions.

3.3 Measuring LLL Video Streaming
Our measurement on LLL video streaming over Starlink networks
is based on dash.js v4.7.1, which was released in June 2023. Three
ABR algorithms, namely Dynamic, LoL+ and L2A-LL and four dif-
ferent latency targets were evaluated. The latency targets range
from 3 seconds to 6 seconds. The video dataset used in our mea-
surements is obtained from the CTA WAVE Test Project4. The bi-
trate ladder is shown in Table 2, which contains 8 representations
with different resolutions and frame rates, and the target H.264
encoding bitrate ranges from 300 Kbps to 6000 Kbps. The video is
segmented into 2-second aligned video segments. We played back
the “live” video stream produced by livesim2 for 5 minutes in
each round of measurement and repeated the same measurement
10 times for each latency target and ABR algorithm. The follow-
ing metrics are collected every 100 milliseconds on our modified
dash.js player during playback,

• Average live latency
• Average bitrate
• Rebuffering time ratio (%)
• Number of bitrate switches
• Bitrate standard deviation

and they are sent to the backend server and stored in theMongoDB
databases for the analysis client to evaluate the performance of LLL
video streaming ABR algorithms.Themeasurement results for LLL
video streaming over Starlink networks, along with a detailed per-
formance evaluation and comparison with the proposed algorithm
are shown in Figure 6 to Figure 10.

4https://github.com/cta-wave/Test-Content

https://github.com/cta-wave/Test-Content

MMSys ’24, April 15–18, 2024, Bari, Italy Jinwei Zhao and Jianping Pan

Table 3: Summary of key notations

Notation Definition
𝐾 Number of arms
𝑇 Total number of rounds
𝑎(𝑡) Arm selected by agent at round 𝑡
𝑏 (𝑡) Context vector revealed to agent at round 𝑡
𝜇𝑘 Distribution parameter for arm 𝑘
𝑞 First round of the current 15-second timeslot

H𝑡−1
𝑞 History beginning from 𝑞 up to round 𝑡 − 1

𝑎∗ (𝑡) Optimal arm at round 𝑡
𝑟 (𝑖) Reward for video segment 𝑖
𝐶 Total number of rebuffering events
𝐶𝑘 Total number of rebuffering events at bitrate 𝑘
𝑡 𝑗 Rebuffering time for event 𝑗
𝑡𝑘𝑗 Rebuffering time for event 𝑗 at bitrate 𝑘

Bmax Highest video bitrate available in the MPD file
R(𝑡) Playback speed at round 𝑡
X(𝑡) Estimated network throughput at round 𝑡
LN (𝑡) Measured network latency at 𝑡

Buffermin Minimal playback buffer threshold
Buffercurrent Current playback buffer level
LLtarget Latency target for the playback session

LLcurrent (𝑖) Playback latency when downloading segment 𝑖
QoEP1203 (𝑖) ITU-T P.1203 QoE score for segment 𝑖

QoE(𝑖) Final QoE for segment 𝑖

4 PROBLEM FORMULATION
In this section, we present the problem formulation of LLL video
streaming using CMAB algorithms, along with a novel QoE-driven
reward function and catch-up policies to improve the QoE of LLL
video streaming over Starlink networks.The key notations are sum-
marized in Table 3.

4.1 System Model
We follow the general CMAB algorithm setting as in [3] to model
the LLL video streaming scenario as follows.The video bitrate adap-
tation problem in live video streaming can be formulated as an on-
line decision-making process. The video player, referred to as an
agent, is presented with a bitrate ladder of 𝐾 different bitrate lev-
els to choose from in each of 𝑇 rounds. We assume 𝑇 is finite but
unknown to the agent. The 𝐾 video bitrate levels are referred to as
𝐾 arms. The decision on which bitrate should be selected for play-
back is analogous to choosing an arm to pull by the agent. Before
the agent pulls an arm in each round, a context vector 𝑏 (𝑡) ∈ R𝑑 is
presented, which contains the context information when the cur-
rent round happens. The context information can include metrics
such as the current network latency, current video playback speed,
estimated network throughput, etc. In this paper, we define the
context vector 𝑏 (𝑡) as follows,

𝑏 (𝑡) = [LN (𝑡), R(𝑡),X(𝑡)] (1)

where at round 𝑡 , LN (𝑡) is the latest measured network latency to
the media server, R(𝑡) is the current playback speed, and X(𝑡) is
the estimated network throughput, respectively.

The agent chooses an arm that is anticipated to yield the highest
expected reward in the current round. That is, the video bitrate se-
lection should yield the highest expected QoE in the current round,
without causing playback interruptions or rebuffering events. In
each round, only the reward of the chosen arm is revealed to the
agent, leaving the rewards of the unselected arms undisclosed.

A history H𝑡−1 containing all the previous rewards of the se-
lected arms and their respective contexts up to round 𝑡 − 1 can
be compiled by the agent before round 𝑡 . In this paper, we only
consider the history H𝑡−1

𝑞 during the current 15-second timeslot
beginning from round 𝑞,

H𝑡−1
𝑞 = {𝑘, 𝑟𝑘 (𝑠), 𝑏 (𝑠), 𝑠 = 𝑞, . . . , 𝑡 − 1} (2)

where 𝑘 denotes the arm played at round 𝑠 and 𝑟𝑘 (𝑠) is the reward
for arm 𝑘 at round 𝑠 , 𝑏 (𝑠) is the context vector at round 𝑠 , and 𝑞 is
the first round of the current 15-second timeslot.

Given 𝑏 (𝑡), the reward for arm 𝑘 at round 𝑡 is derived from an
unknown distribution with mean 𝑏 (𝑡)𝑇 𝜇𝑘 , where 𝜇𝑘 ∈ R𝑑 is a con-
stant parameter unknown to the agent. 𝑏 (𝑡)𝑇 denotes the matrix
transpose of 𝑏 (𝑡). The expected reward of 𝑟𝑘 (𝑡) for each arm 𝑘
given 𝑏 (𝑡) andH𝑡−1

𝑞 can be defined as,

E
[
𝑟𝑘 (𝑡) | 𝑏 (𝑡),H𝑡−1

𝑞

]
= 𝑏 (𝑡)𝑇 𝜇𝑘 . (3)

In a CMAB scenario, an agent employing an online learning al-
gorithm must decide which arm 𝑘 to pull at each round 𝑡 , consid-
ering both the history H𝑡−1

𝑞 and the context vector 𝑏 (𝑡) of the
current round made available to the agent.

Define𝑎∗ (𝑡) as the optimal arm at round 𝑡 that provides themax-
imum expected reward, formulated as 𝑎∗ (𝑡) = argmax𝑘 𝑏 (𝑡)𝑇 𝜇𝑘 .
Let Δ𝑘 (𝑡) represent the difference in reward between the optimal
arm 𝑎∗ (𝑡) and arm 𝑘 at time 𝑡 , i.e.,

Δ𝑘 (𝑡) = 𝑏 (𝑡)𝑇 𝜇𝑎∗ (𝑡) − 𝑏 (𝑡)𝑇 𝜇𝑘 (4)
Then, the regret at round 𝑡 is defined as

regret(𝑡) = Δ𝑘 (𝑡) (5)
It is worth noting that the CMAB problem setting presented

here deviates from the one outlined in [3]. In our scenario, the as-
sumption is that each arm 𝑘 is revealed with the identical context
vector 𝑏 (𝑡). Moreover, each arm follows an unknown yet unique
distribution defined by its respective 𝜇𝑘 . We also only consider
the historyH𝑡−1

𝑞 during the current 15-second timeslot beginning
from round 𝑞, because of the unique and fluctuating latency pat-
tern in each timeslot as observed in Figure 4.

4.2 QoE-driven Reward Function
To evaluate the video streaming experience, we employed ITU-
T P.1203 [2] Recommendation model to derive the QoE score for
each video segment. Specifically, we used the ITU-T P.1203 Mode
0, which derives from video stream metadata and yields an overall
QoE score represented as a Mean Opinion Score (MOS) for video
segments. We took the O.46 score from ITU-T P.1203 model out-
puts, which is a single media session quality score, on a 1–5 quality
scale in real numbers.

To integrate the ITU-T P.1203 model with our CMAB-based al-
gorithm, we develop a QoE-driven reward function with the pri-
mary objective of reducing the live latency, increasing playback

Low-Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH MMSys ’24, April 15–18, 2024, Bari, Italy

bitrate and minimizing rebuffering events. The reward function is
defined as follows,

QoE(𝑖) = QoEP1203 (𝑖) ∗
LLtarget

LLcurrent (𝑖)
∗ 𝑘

Bmax
−
∑𝐶𝑘

𝑗=1 𝑡
𝑘
𝑗∑𝐶

𝑗=1 𝑡 𝑗
(6)

where QoEP1203 (𝑖) represents the O.46 MOS score for video seg-
ment 𝑖 calculated by ITU-T P.1203 model, LLtarget represents the
latency target in the current playback session, LLcurrent (𝑖) repre-
sents the live latency when downloading video segment 𝑖 , 𝐶 rep-
resents the total number of rebuffering events, 𝐶𝑘 represents the
number of rebuffering events happens at bitrate 𝑘 , 𝑡 𝑗 represents
the duration of rebuffering event 𝑗 , 𝑡𝑘𝑗 represents the duration of
rebuffering event 𝑗 happens at bitrate 𝑘 , arm 𝑘 is the video bitrate
for segment 𝑖 , and Bmax is the highest video bitrate available in the
MPD file.

The agent pulls an arm before downloading each video segment
𝑖 , and the corresponding reward 𝑟 (𝑖) for video segment 𝑖 obtained
is defined as,

𝑟 (𝑖) = QoE(𝑖) (7)
The objective of the agent is to pull the best arm which yields the
highest expected reward in each round for video segment 𝑖 .

4.3 Catch-up Policy
A similar empirical catch-up policy as in LoL+ [4] is employed in
the proposed algorithm. The main goal of our catch-up policy and
playback speed control module is to avoid potential playback inter-
ruptions during satellite handover periods, in addition to the case
when the playback buffer is below the safe threshold. The satellite
handover period is defined based on the measurement results in
Section 3, as the (12-27-42-57) seconds of every minute. We mod-
ify the LoL+ catch-up policy as follows,
• The current playback buffer level is below the safe threshold
(Buffermin), or it is currently within the satellite handover pe-
riod: slow down the playback speed below 1.0.

• The current buffer level is sufficient, and it is not within the satel-
lite handover period:
– The live latency is close to the latency target (𝜖 = ±2%): main-
tain playback speed at 1.0.

– The live latency is lower than the latency target: slow down
playback speed.

– The live latency is higher than the latency target: speed up
playback speed.

5 EVALUATION
We evaluated the performance of the proposed algorithm and com-
pared it with the other three LLL video streaming ABR algorithms
in network emulation settings and real Starlink networks. The per-
formance evaluation on Starlink networks was only conducted on
the Starlink installation without ISL being utilized. The implemen-
tation of this paper is available on GitHub5.

In addition to evaluating the performance of LLL video stream-
ing ABR algorithms in real Starlink networks, we also built a net-
work emulation testbed to provide repeatable environments for

5https://github.com/clarkzjw/mmsys24-starlink-livestreaming

Figure 5: Starlink DASH emulation testbed architecture

performance evaluation. The architecture of the purpose-built em-
ulation testbed is similar to the real Starlink testbed with minor
modifications, which is shown in Figure 5. All the components in
Figure 5 are deployed on a single machine using Docker containers
and orchestrated byDocker Compose. A “Traffic Shaper” container
is added to the emulation testbed between the dash.js player and
the frontend Nginx web server to add artificial network latency
and packet loss following the Starlink satellite handover pattern
and the measured latency performance. Specifically, the “Traffic
Shaper” container is implemented using the Linux network util-
ity tc and netem to introduce artificial delay and packet loss dur-
ing handover periods. We utilized latency traces from our LENS
dataset [28] to provide reasonable and realistic network latency
and packet loss estimations during handover periods. In our emu-
lation, we set the latency to 100 ms and the packet loss rate to 1%
during handover periods, which is defined as (12-27-42-57) seconds
every minute.The network latency and packet loss rate outside the
handover periods are set to 40 ms and 0.1% respectively.

We implemented our CMAB-based ABR algorithm on dash.js
v4.7.1 and built an end-to-end evaluation prototype. To solve the
online learning problem with CMAB algorithms, MABWiser [23]
which provides fast prototyping with various CMAB algorithms is
chosen in our implementation. While other CMAB algorithms are
available, our implementation chose Linear Thompson Sampling
(LinTS) [3] as our solution. To integrate MABWiserwith dash.js, we
utilized Pyodide [25], which is a WebAssembly-based Python run-
time for browsers. We implemented the core CMAB algorithm for
bitrate adaptation and QoE calculation in Python and interacted
with dash.js through Pyodide APIs. We acknowledge that imple-
menting our proposed algorithm in dash.js with WebAssembly-
based Python is slower than a native JavaScript implementation,
with our measurement, the performance overhead and the time
cost to solve the CMAB problem in each round is below 100 mil-
liseconds, which is negligible in our scenario. We also disabled
the FastSwitching option in dash.js similar to the latency target-
based measurements in [17] and used the “moof” parsing method
for throughput calculation.Thenetwork latency to themedia server
LN (𝑡) is measured in the backend server as shown in Figure 1 and
Figure 5 and queried by dash.js clients through REST APIs. We
set the maxDrift to 5s and playbackRate to 0.17. For Dynamic and
L2A-LL algorithms, we set the catch-up mechanism to the Default,
while LoL+ and our proposed algorithm have their distinct catch-
up mechanisms. The exploration rate of LinTS is set to 1.0. In ad-
dition to network emulation and real Starlink networks, we also

https://github.com/clarkzjw/mmsys24-starlink-livestreaming

MMSys ’24, April 15–18, 2024, Bari, Italy Jinwei Zhao and Jianping Pan

3 4 5 6
Latency Target (seconds)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Av
er
ag

e
Liv

e
La

te
nc

y
(s
ec

on
ds

) L2A-LL
Dynamic
LoL+
CMAB
Expected

(a) Emulation

3 4 5 6
Latency Target (seconds)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Av
er
ag

e
Liv

e
La

te
nc

y
(s
ec

on
ds

) L2A-LL
Dynamic
LoL+
CMAB
Expected

(b) Starlink

3 4 5 6
Latency Target (seconds)

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Av
er
ag

e
Liv

e
La

te
nc

y
(s
ec

on
ds

) L2A-LL
Dynamic
LoL+
CMAB
Expected

(c) Terrestrial

Figure 6: Average live latency

3 4 5 6
Latency Target (seconds)

0

1000

2000

3000

4000

5000

6000

Av
er
ag

e
Bi
tra

te
 (K

bp
s)

L2A-LL
Dynamic
LoL+
CMAB

(a) Emulation

3 4 5 6
Latency Target (seconds)

0

1000

2000

3000

4000

5000

6000

Av
er
ag

e
Bi
tra

te
 (K

bp
s)

L2A-LL
Dynamic
LoL+
CMAB

(b) Starlink

3 4 5 6
Latency Target (seconds)

0

1000

2000

3000

4000

5000

6000

Av
er
ag

e
Bi
tra

te
 (K

bp
s)

L2A-LL
Dynamic
LoL+
CMAB

(c) Terrestrial

Figure 7: Average bitrate

3 4 5 6
Latency Target (seconds)

0

1

2

3

4

5

6

7

Re
bu

ffe
rin

g
Ti
m
e
Ra

tio
 (%

) L2A-LL
Dynamic
LoL+
CMAB

(a) Emulation

3 4 5 6
Latency Target (seconds)

0

1

2

3

4

5

6

7

Re
bu

ffe
rin

g
Ti
m
e
Ra

tio
 (%

) L2A-LL
Dynamic
LoL+
CMAB

(b) Starlink

3 4 5 6
Latency Target (seconds)

0

1

2

3

4

5

6

7

Re
bu

ffe
rin

g
Ti
m
e
Ra

tio
 (%

) L2A-LL
Dynamic
LoL+
CMAB

(c) Terrestrial

Figure 8: Rebuffering time ratio (%)

included a terrestrial network setting as the control group. As our
proposed ABR algorithm takes advantage of predictable satellite
handover patterns, when evaluating the performance of the pro-
posed algorithm in the terrestrial network setting, we disabled the
handover awareness and replaced the catch-up mechanism with
the Default catch-up policy in dash.js.

The first performancemetric is average live latency, which plays
the most critical role and significantly affects user experience in
LLL video streaming. Figure 6 shows the average live latency in
all three network settings. In the network emulation scenario as
shown in Figure 6(a), when the latency target is 3 seconds, all the

ABR algorithms cannot reach the expected latency requirement
with at least 1.5 seconds of deviation. As the latency target in-
creases, the gap between average live latency and expected latency
requirement narrows. This is partially because of the 2-second seg-
ment duration in our performance evaluation, which leaves the
catch-up policy with less space to adjust the playback speed to
reach the latency target. In real Starlink networks, as shown in
Figure 6(b), only the proposed algorithm can achieve lower live la-
tency than the expected latency target, when the latency target is
larger than 4 seconds. In the terrestrial network setting as shown

Low-Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH MMSys ’24, April 15–18, 2024, Bari, Italy

3 4 5 6
Latency Target (seconds)

0

20

40

60

80

100

120

140

160

Nu
m
be
r o

f B
itr
at
e
Sw

itc
he
s L2A-LL

Dynamic
LoL+
CMAB

(a) Emulation

3 4 5 6
Latency Target (seconds)

0

20

40

60

80

100

120

140

160

Nu
m
be
r o

f B
itr
at
e
Sw

itc
he
s L2A-LL

Dynamic
LoL+
CMAB

(b) Starlink

3 4 5 6
Latency Target (seconds)

0

20

40

60

80

100

120

140

160

Nu
m
be
r o

f B
itr
at
e
Sw

itc
he
s

L2A-LL
Dynamic
LoL+
CMAB

(c) Terrestrial

Figure 9: Number of bitrate switches

3 4 5 6
Latency Target (seconds)

0

200

400

600

800

1000

1200

1400

Bi
tra

te
 S
ta
nd
ar
d
De

vi
at
io
n
(K
bp
s) L2A-LL

Dynamic
LoL+
CMAB

(a) Emulation

3 4 5 6
Latency Target (seconds)

0

200

400

600

800

1000

1200

1400

Bi
tra

te
 S
ta
nd
ar
d
De

vi
at
io
n
(K
bp
s) L2A-LL

Dynamic
LoL+
CMAB

(b) Starlink

3 4 5 6
Latency Target (seconds)

0

200

400

600

800

1000

1200

1400

Bi
tra

te
 S
ta
nd
ar
d
De

vi
at
io
n
(K
bp
s) L2A-LL

Dynamic
LoL+
CMAB

(c) Terrestrial

Figure 10: Bitrate standard deviation

3 4 5 6
Latency Target (seconds)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Av
er
ag

e
Re

wa
rd

Emulation
Starlink
Terrestrial

Figure 11: Average reward

in Figure 6(c), the proposed algorithm has the lowest average live
latency across different latency targets.

In Figure 7, we can see all ABR algorithms show the same trend
in increasing the average bitrate as the latency target increases.
Across different scenarios, L2A-LL maintains the highest average
bitrate, while Dynamic has larger bitrate fluctuations in network
emulation and real Starlink networks. The proposed CMAB-based
ABR algorithm always maintains a high average bitrate across dif-
ferent latency targets and different network scenarios. Although
the proposed algorithm has a relatively lower average bitrate than
Dynamic and L2A-LL in the terrestrial network setting, it is a bene-
ficial trade-off when considering the performance in dynamic net-
work environments.

Rebuffering events interrupt the live video streaming playback
and significantly affect user experience. Figure 8 shows the re-
buffering time ratio in all three network settings. A larger latency
target allows the player to build a more substantial local playback
buffer, thereby better tolerating network fluctuations and reducing
rebuffering events. In the real Starlink network setting, the pro-
posed algorithm can achieve a low rebuffering time ratio close to
L2A-LL as shown in Figure 8(b), especially when the latency tar-
get is larger than 4 seconds. In Figure 8(a), the deviation of the
rebuffering time ratio is less significant than the real Starlink net-
work setting, partially due to the less dynamic network emulation
setting than real Starlink networks. No rebuffering events are ob-
served in the terrestrial network setting for all ABR algorithms as
shown in Figure 8(c).

Figure 9 shows the number of bitrate switches in all three net-
work settings. L2A-LL has the least number of bitrate switches
across different latency targets. Both Dynamic and LoL+ show a
similar decreasing trend in the number of bitrate switches as the
latency target increases in network emulation and real Starlink net-
works as shown in Figure 9(a) and Figure 9(b). Our proposed algo-
rithm has a generally higher number of bitrate switches than other
ABR algorithms in all network scenarios.

However, Figure 10 shows that our proposed algorithm has a
relatively low bitrate standard deviation in both network emula-
tion and real Starlink networks. A lower bitrate standard deviation
indicates that the algorithm can maintain a more stable playback

MMSys ’24, April 15–18, 2024, Bari, Italy Jinwei Zhao and Jianping Pan

0 100 200
Throughput (Mbps)

0.0

0.5

1.0

CD
F

With ISL
Without ISL

(a) Downlink throughput CDF

0 20 40 60
Throughput (Mbps)

0.0

0.5

1.0

CD
F

With ISL
Without ISL

(b) Uplink throughput CDF

Figure 12: CDF of throughputs

quality and the shifts in playback quality with the proposed algo-
rithm bring less visual impact to users compared with other ABR
algorithms. However, this implication should be further verified
by other visual quality assessment methods such as VMAF [16]
in future works. There is one observation from the results worth
mentioning is that our proposed algorithm also has a high number
of bitrate switches in the terrestrial network environment. The po-
tential explanation is that our algorithm only considers the history
within the current 15-second timeslot without a moving average of
previous measurements, and it has to restart the exploration phase
from scratch after every handover event. In conjunction with the
2-second DASH video segment duration, and the limited playback
buffer size in live video streaming, it is challenging for the agent
to converge to the optimal bitrate in a short time.

Figure 11 shows the average reward of the proposed algorithm
in all three network settings. It shows that our ITU-T P.1203-based
reward function can effectively guide the CMAB algorithm tomake
ABR decisions and it can accurately reflect the performance of the
proposed algorithm in different network scenarios.

6 DISCUSSION
In this paper, we mainly focused on measuring the performance
of Starlink networks and low-latency ABR algorithms in one-way
live video streaming scenarios from media servers to end users.
However, there are still many open research challenges left to be
explored in the future.

As the popularity of live broadcasting and short video-sharing
platforms such as Twitch and TikTok grows, the video ingest per-
formance on the uplink is also becoming more important. How-
ever, the uplink performance of Starlink networks is significantly
subpar compared to the downlink performance. As shown in Fig-
ure 12, the uplink throughput is significantly lower than the down-
link throughput with very high fluctuations. Similar to Section 3.2,
it is important to note that the utilization of ISL does not directly
impact throughput performance. Instead, it is influenced by Star-
link’s capacity limitations and QoS policies in different geograph-
ical regions. In contrast to the “pull”-based model of live video
streaming on the downlink path, live broadcasting workflow in-
volves streaming software such asOBS and uses RTMP/HLS/DASH
to ingest video streams to the service provider’s servers using a
“push”-based model. In this case, the video ingestion clients can

better utilize the predictable satellite handover patterns to dynami-
cally adjust the video encoding bitrate and sending rate to avoid po-
tential bufferbloat and improve the video ingestion performance.

The dynamic nature of LEO satellite networks poses challenges
to the traditional CDN architecture for media delivery. Given the
inherent mobility of LEO satellites, the conventional paradigms
of “local” or “edge” computing are being redefined, leaving issues
such as resource allocation, storage, and caching as open areas for
exploration. The TCP performance over Starlink is significantly af-
fected by the slow start pattern as satellite handover events hap-
pen every 15 seconds. Other generic congestion control algorithms,
such as BBR and HyStart++, or congestion control algorithms with
satellite network awareness, such as SaTCP [6], may yield better
TCP throughput performance when compared to CUBIC on Star-
link networks. QUIC and its extensions including MPQUIC [13]
and Media-over-QUIC (moq) [7] can potentially significantly re-
duce the impact of satellite handover events on TCP performance
and therefore improve upper-layer application performance.

The performance of demanding applications such as cloud gam-
ing over LEO satellite networks [14] remains an area requiring
comprehensive investigation. Essentially, cloud gaming is interac-
tive ultra-low latency live video streaming. Latency-sensitive sce-
narios, especially in games like first-person shooters, are particu-
larly vulnerable to fluctuating latency and frequent satellite han-
dovers, given they also encompass human interactions via Star-
link’s uplink channels.

7 CONCLUSION
In this paper, we conducted a thorough measurement study on the
Starlink access network at multiple geographical Starlink instal-
lations, across different protocol layers from access latency and
raw TCP throughput to application-layer LLL video streaming per-
formances. We proposed a CMAB-based ABR algorithm for LLL
video streaming over Starlink networks, with a novel reward func-
tion and catch-up policy considering satellite handover patterns.
An end-to-end prototype of the proposed algorithm was imple-
mented in dash.js and performance evaluations were conducted
on a purpose-built network emulation testbed and real Starlink
networks. The results illustrated that the proposed algorithm can
achieve low playback latency, high video bitrate, low rebuffering
time ratio and few visual quality fluctuations. For future works,
VMAF can be used to evaluate the visual quality fluctuation of dif-
ferent ABR algorithms in LLL video streaming over Starlink net-
works. Utilizing CMAF chunked encoding and chunked transfer
over Starlink networks could further enhance the live streaming
latency and QoE. It is also worth investigating the performance of
existing LLL video streaming ABR algorithms with satellite han-
dover awareness and the performance of uplink video streaming
over ISL-enabled Starlink networks.

ACKNOWLEDGMENT
We appreciate the constructive comments and feedback from the
reviewers and the shepherd. This work was supported in part by
NSERC, CFI and BCKDF. The work is also not possible without
Starlink users such as Dominique who allowed us to access their
dishes.

Low-Latency Live Video Streaming over a Low-Earth-Orbit Satellite Network with DASH MMSys ’24, April 15–18, 2024, Bari, Italy

REFERENCES
[1] [n. d.]. CTATheWave Project: Web Application Video Ecosystem Interoperabil-

ity Project. https://github.com/cta-wave/Test-Content.
[2] 2017. P.1203 : Parametric Bitstream-Based Quality Assessment of Progressive

Download and Adaptive Audiovisual Streaming Services over Reliable Trans-
port. https://www.itu.int/rec/T-REC-P.1203-201710-I/en.

[3] Shipra Agrawal and Navin Goyal. 2013. Thompson Sampling for Contextual
Bandits with Linear Payoffs. In Proceedings of the 30th International Conference
on Machine Learning. PMLR, 127–135.

[4] Abdelhak Bentaleb, Mehmet N. Akcay, May Lim, Ali C. Begen, and Roger Zim-
mermann. 2022. Catching the Moment With LoL+ in Twitch-Like Low-Latency
Live Streaming Platforms. IEEE Transactions onMultimedia 24 (2022), 2300–2314.
https://doi.org/10.1109/TMM.2021.3079288

[5] Rodrigo Blázquez-García, Diego Cristallini, Martin Ummenhofer, Viktor Seidel,
Jörg Heckenbach, and Daniel O’Hagan. 2023. Experimental Comparison of
Starlink and OneWeb Signals for Passive Radar. In 2023 IEEE Radar Conference
(RadarConf23). 1–6. https://doi.org/10.1109/RadarConf2351548.2023.10149580

[6] Xuyang Cao and Xinyu Zhang. 2023. SaTCP: Link-Layer Informed TCP Adap-
tation for Highly Dynamic LEO Satellite Networks. In IEEE INFOCOM 2023 -
IEEE Conference on Computer Communications. 1–10. https://doi.org/10.1109/
INFOCOM53939.2023.10228914

[7] Luke Curley, Kirill Pugin, Suhas Nandakumar, Victor Vasiliev, and Ian Swett.
2024. Media over QUIC Transport. https://datatracker.ietf.org/doc/draft-ietf-
moq-transport.

[8] DASH Industry Forum. 2023. Dash-Industry-Forum/Dash.Js.
https://github.com/Dash-Industry-Forum/dash.js.

[9] DASH Industry Forum. 2023. Dash-Industry-Forum/Livesim2.
https://github.com/Dash-Industry-Forum/livesim2.

[10] Jayasuryan V. Iyer, Khasim Shaheed Shaik Mahammad, Yashodhan Dandekar,
Ramakrishna Akella, Chen Chen, Phillip E. Barber, and Peter J. Worters. 2022.
System and Method of Providing a Medium Access Control Scheduler.

[11] Theo Karagkioules, Rufael Mekuria, Dirk Griffioen, and Arjen Wagenaar. 2020.
Online Learning for Low-Latency Adaptive Streaming. In Proceedings of the
11th ACMMultimedia Systems Conference (MMSys ’20). Association for Comput-
ing Machinery, New York, NY, USA, 315–320. https://doi.org/10.1145/3339825.
3397042

[12] Jiajia Liu, Yongpeng Shi, Zubair Md. Fadlullah, and Nei Kato. 2018. Space-Air-
Ground Integrated Network: A Survey. IEEE Communications Surveys & Tutori-
als 20, 4 (2018), 2714–2741. https://doi.org/10.1109/COMST.2018.2841996

[13] Yanmei Liu, Yunfei Ma, Quentin De Coninck, Olivier Bonaventure, Chris-
tian Huitema, and Mirja Kühlewind. 2023. Multipath Extension for QUIC.
https://datatracker.ietf.org/doc/draft-ietf-quic-multipath-06.

[14] Nitinder Mohan, Andrew Ferguson, Hendrik Cech, Rohan Bose, Prakita Rayyan
Renatin, Mahesh Marina, and Jörg Ott. 2024. A Multifaceted Look at Starlink
Performance. In Proceedings of the ACM Web Conference 2024 (WWW ’24). As-
sociation for Computing Machinery, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3589334.3645328

[15] Owens Nathan. 2023. Unoffical Starlink Global Gateways & PoPs.
https://tinyurl.com/nathanstarlink.

[16] Netflix. 2023. Netflix/Vmaf. https://github.com/Netflix/vmaf.
[17] Piers O’Hanlon and Adil Aslam. 2023. Latency Target Based Analysis of the

DASH.Js Player. In Proceedings of the 14th Conference on ACM Multimedia Sys-
tems (MMSys ’23). Association for Computing Machinery, New York, NY, USA,
153–160. https://doi.org/10.1145/3587819.3590971

[18] Jianping Pan, Jinwei Zhao, and Lin Cai. 2023. Measuring a Low-Earth-Orbit
Satellite Network. In 2023 IEEE 34th Annual International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC) (PIMRC ’23). 1–6. https://doi.
org/10.1109/PIMRC56721.2023.10294034

[19] Crist Ry and Paul Trey. 2023. Starlink Internet Explained.
https://www.cnet.com/home/internet/starlink-satellite-internet-explained/.

[20] SpaceX. 2023. Starlink. https://www.starlink.com.
[21] Kevin Spiteri, Ramesh Sitaraman, and Daniel Sparacio. 2019. From Theory to

Practice: Improving Bitrate Adaptation in the DASH Reference Player. ACM
Transactions on Multimedia Computing, Communications, and Applications 15,
2s (July 2019), 67:1–67:29. https://doi.org/10.1145/3336497

[22] Kevin Spiteri, Rahul Urgaonkar, and Ramesh K. Sitaraman. 2020. BOLA: Near-
Optimal Bitrate Adaptation for Online Videos. IEEE/ACM Transactions on
Networking 28, 4 (Aug. 2020), 1698–1711. https://doi.org/10.1109/TNET.2020.
2996964

[23] Emily Strong, Bernard Kleynhans, and Serdar Kadıoğlu. 2021. MABWISER:
Parallelizable Contextual Multi-armed Bandits. International Journal on Arti-
ficial Intelligence Tools 30, 04 (June 2021), 2150021. https://doi.org/10.1142/
S0218213021500214

[24] Hammas Bin Tanveer, Mike Puchol, Rachee Singh, Antonio Bianchi, and Rishab
Nithyanand. 2023. Making Sense of Constellations: Methodologies for Un-
derstanding Starlink’s Scheduling Algorithms. In Companion of the 19th In-
ternational Conference on Emerging Networking EXperiments and Technologies

(CoNEXT ’23). Association for Computing Machinery, New York, NY, USA, 37–
43. https://doi.org/10.1145/3624354.3630586

[25] The Pyodide development team. 2023. Pyodide/Pyodide.
https://github.com/pyodide/pyodide.

[26] YufeiWang, Lin Cai, and Jun Liu. 2023. High-Reliability, Low-Latency, and Load-
Balancing Multipath Routing for LEO Satellite Networks. In 2023 Biennial Sym-
posium on Communications (BSC). 107–111. https://doi.org/10.1109/BSC57238.
2023.10201829

[27] Haoyuan Zhao, Hao Fang, Feng Wang, and Jiangchuan Liu. 2023. Realtime Mul-
timedia Services over Starlink: A Reality Check. In Proceedings of the 33rd Work-
shop on Network and Operating System Support for Digital Audio and Video (NOSS-
DAV ’23). Association for Computing Machinery, New York, NY, USA, 43–49.
https://doi.org/10.1145/3592473.3592562

[28] Jinwei Zhao. 2024. LENS: A LEO Satellite Network Measurement Dataset.
https://github.com/clarkzjw/LENS.

https://doi.org/10.1109/TMM.2021.3079288
https://doi.org/10.1109/RadarConf2351548.2023.10149580
https://doi.org/10.1109/INFOCOM53939.2023.10228914
https://doi.org/10.1109/INFOCOM53939.2023.10228914
https://doi.org/10.1145/3339825.3397042
https://doi.org/10.1145/3339825.3397042
https://doi.org/10.1109/COMST.2018.2841996
https://doi.org/10.1145/3589334.3645328
https://doi.org/10.1145/3589334.3645328
https://doi.org/10.1145/3587819.3590971
https://doi.org/10.1109/PIMRC56721.2023.10294034
https://doi.org/10.1109/PIMRC56721.2023.10294034
https://doi.org/10.1145/3336497
https://doi.org/10.1109/TNET.2020.2996964
https://doi.org/10.1109/TNET.2020.2996964
https://doi.org/10.1142/S0218213021500214
https://doi.org/10.1142/S0218213021500214
https://doi.org/10.1145/3624354.3630586
https://doi.org/10.1109/BSC57238.2023.10201829
https://doi.org/10.1109/BSC57238.2023.10201829
https://doi.org/10.1145/3592473.3592562

MMSys ’24, April 15–18, 2024, Bari, Italy Jinwei Zhao and Jianping Pan

A ARTIFACT APPENDIX
A.1 Abstract
This artifact contains the source files for our modified dash.js [8]
player and a custom end-to-end LLL video streaming framework
for scheduling and running experiments with both network emu-
lation and real-world networks.

Additionally, this artifact contains the network measurement
data and necessary scripts to generate the figures in Section 3. It
also contains the experiment configuration files and Dockerfiles to
build the Docker images for running the experiments in Section 5.

Finally, this artifact contains the results of our LLL video stream-
ing experiments, including all three scenarios, namely Emulation,
Starlink and Terrestrial, and the corresponding scripts to generate
the figures in Section 5.

A.2 Artifact check-list (meta-information)
• Algorithm: Dynamic, L2A-LL, LoL+, CMAB
• Data set: CTA WAVE Test Project [1]
• Run-time environment: Debian-based Linux distribution
with Docker installed (Debian 12 recommended)

• Hardware: x86-64 bare-metal Linux server or virtual ma-
chine

• Output: LLL video streaming metrics captured from the
modified dash.js player

• How much disk space required (approximately)?: 128
GB

• How much time is needed to prepare workflow (ap-
proximately)?: Around 1 hour

• How much time is needed to complete experiments
(approximately)?: Around 14 hours if running the full set
of experiments

• Publicly available?: Yes
• Code licenses (if publicly available)?: GPL-3.0
• Data licenses (if publicly available)?: CC BY-SA 4.0
• Archived (provide DOI)?: 10.24433/CO.7355266.v1

A.3 Description
A.3.1 How to access. All source files, configurations and scripts
are available at theGitHub repository: https://github.com/clarkzjw/
mmsys24-starlink-livestreaming. The README.md file provides
an overview of the repository structure.

A.3.2 Hardware dependencies. Any bare-metal Linux server or vir-
tual machine capable of running recent versions of Docker and
Docker Compose should suffice. For network emulation and real-
world experiments, a machine with at least 16 GB of RAM and 4
CPU cores is recommended.

A.3.3 Software dependencies. The results in this paper were pro-
duced on Debian 12.5 x86-64 with Docker version 25.0.3 and the
Docker Compose plugin version 2.24.5. Only Debian-based Linux
distributions are tested.

A.4 Re-generate paper results
To re-generate the figures in the paper, users can directly use the
code capsule published on Code Ocean: https://doi.org/10.24433/

CO.7355266.v1, and click the “Reproducible Run” button. It con-
tains the necessary software dependencies pre-installed and the
figures will be generated automatically in the “results” folder. Al-
ternatively, users can follow the steps in the README.md file and
run the provided Docker image to generate the figures.The figures
will be generated in the “paper-figures” folder.

A.5 Network emulation and real-world
experiments

A.5.1 Installation. To replicate the experiments using either net-
work emulation or real-world networks, or to conduct custom ex-
periments utilizing our end-to-end LLL video streaming framework,
users are encouraged to follow the steps in the README.md file
for detailed installation instructions.

A.5.2 Evaluation and expected results. The complete suite of ex-
periments, available in the experiments folder in the repository,
is expected to take approximately 14 hours to complete with either
network emulation or real-world networks. Afterward, the results
can be found in the figures folder. A helper Docker image is pro-
vided to quickly generate all the figures. See the README.md file
in the GitHub repository for more details.

A.6 Experiment customization
The video streaming experiments can be customized by modifying
the configuration files in the experiments folder. The following
parameters can be adjusted:

• EMULATION: This option should be enabled for users in-
tending to conduct the experiments with network emula-
tion.

• ROUND_DURATION: The time duration of each round in
seconds.

• TARGET_LATENCY: The target latency in seconds.
• CONSTANT_VIDEO_BITRATE: When set to -1, ABR al-
gorithm is effective. Otherwise, the dash.js player uses the
fixed video bitrate as specified in Kbps.

• CMAB_ALPHA: The exploration parameter for the CMAB
algorithm.

• TOTAL_ROUNDS: The total number of rounds to be re-
peated for the experiment.

• MPD_URL: The URL of the MPDmanifest file. When using
the provided Docker images in network emulation mode,
this option should not be changed.

• ABR_ALGORITHM: The name of the ABR algorithm. The
following options are available: abrDynamic, abrL2A, abr-
LoLP and abrCMAB, where abrCMAB is the proposed algo-
rithm in the paper. Note that these are internal names, they
map to theDynamic, L2A-LL, LoL+ and the proposed CMAB-
based ABR algorithm in the paper, respectively.

• CATCH_UP: The name of the catch-up policy. The follow-
ing options are available: liveCatchupModeDefault, liveCatchup-
ModeLoLP and liveCatchupModeCMAB, where liveCatchup-
ModeCMAB is the proposed catch-up policy in the paper.
Note that these are internal names, they map to the Default,
LoL+ and the proposed handover-aware catch-up policy in
the paper, respectively.

https://doi.org/10.24433/CO.7355266.v1
https://github.com/clarkzjw/mmsys24-starlink-livestreaming
https://github.com/clarkzjw/mmsys24-starlink-livestreaming
https://doi.org/10.24433/CO.7355266.v1
https://doi.org/10.24433/CO.7355266.v1

	Abstract
	1 Introduction
	2 Related Works
	3 Measurement
	3.1 Setup
	3.2 Measuring Starlink Access Network
	3.3 Measuring LLL Video Streaming

	4 Problem Formulation
	4.1 System Model
	4.2 QoE-driven Reward Function
	4.3 Catch-up Policy

	5 Evaluation
	6 Discussion
	7 Conclusion
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Re-generate paper results
	A.5 Network emulation and real-world experiments
	A.6 Experiment customization

