

Wireless Network

➢ Wireless channels with varying transmission rates between time slots

(Class 2)

to transmit in each time slot

MU (Class 3) \succ The number of users may not be fixed in the network MU Base station schedules which user System Capacity Region (CR) $\Pr[S_1(t) = 0] = 0.3, \quad \Pr[S_1(t) = 0] = 0.7$ **(**0.14, 1.10) $\Pr[S_2(t) = 0] = 0.2, \quad \Pr[S_2(t) = 1] = 0.5, \quad \Pr[S_2(t) = 2] = 0.3$ S₁(t) in {0,1} $Q_1(t)$ $A_1(t)$ (0.49, 0.75) ε_{max}⊀ ε_{max} $Q_2(t)$ $A_{2}(t)$ (0.70, 0.33) S₂(t) in {0,1,2} $\mathsf{E}\{\mathsf{A}_1(\mathsf{t})\} = \lambda_1$ λ_1 $\mathsf{E}\{\mathsf{A}_2(\mathsf{t})\} = \lambda_2$ ➤ A: arrival rate ➢ S: transmission rate **Algorithm Stability Region (SR)** \succ SR is the maximum data arrival rate (0.14, 1.10) that a certain scheduling algorithm Unsupported arrival rate can support. Unsupported arrival rates (gray area)

 \succ CR is the maximum data arrival rate that the system can support.

- exit in CR if SR (shadowed area) is smaller than CR
- Scheduling algorithm is **throughput**optimal if SR is identical to CR
- System is unstable when arrival rates (point Z) lie beyond SR. Queue size goes to infinity when unstable.

Scheduling Algorithm Design in Wireless Networks Yi Chen CN Lab, ECE, UVic

Motivation

- > Flow-level Dynamics: there are unfixed number of users in the system
- Classic queue length based MaxWeight scheduling (Q-MW) is not throughput-optimal with Flow-level Dynamics
- > Current solutions (MR, F-D-MW) require sophisticated system information

Objective & Solution

- ▶ How to design a scheduling algorithm for the systems with flow-level dynamics?
- 1). throughput-optimal
- \circ 2). easy for implementation
- Head-of-Line Delay based Scheduling Algorithm (HOL-D-MW)

$\{i\}^*(H_i(t), r_i(t)) = \operatorname{argmax}_i H_i(t) * r_i(t)$

1. Y. Chen, X. Wang, L. Cai, HOL Delay Based Scheduling in Wireless Networks with Flow-Level Dynamics, IEEE Globecom 2014.

- \succ Traffic arrival rate is almost on the edge of system CR
- ➢ HOL-D-MW has infinite total queue size in the system
- ► HOL-D-MW is throughput optimal because the system is
- ➢ Q-MW is not throughput optimal
- \succ Traffic arrival rate is almost on the edge of system CR
- ➢ HOL-D-MW has infinite average queue size

- ➢ Traffic arrival rate keeps increasing to the boundary of system CR
- > Q-MW has a growing queue size without control

Bibliography